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Geographic variation in life history traits has been extensively studied along latitudinal and altitudinal
clines, but life history variation among geographically close populations has received much less atten-
tion. We collected gravid female toad-headed lizards (Phrynocephalus przewalskii) and environmental
data from three localities (Alxa Zuoqi, Alxa Youqi, and Shandan) across the Gobi desert in China, to
examine among-population differences in reproductive strategies. The precipitation was significantly
lower in Alxa Youqi than Alxa Zouqi and Shandan. Food availability was highest in Shandan, lowest in
Alxa Zuoqi, with Alxa Youqi in between. Females from Shandan population were larger and produced
more and larger eggs than their counterparts from the other two populations. Incubation period also
differed among the populations, with the lowest incubation period in Alxa Youqi population, and the
longest incubation period in Alxa Zuoqi population. Our data on the physiological mechanisms of in-
cubation period indicated that the shortened incubation period in Alxa Youqi population was due to
advanced embryogenesis completed prior to oviposition rather than higher embryonic heart rates during
incubation. Therefore, our data support the hypothesis that geographically close populations can show
different reproductive strategies if environmental factors vary among these populations.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

Comparative studies both among and within species have
demonstrated that life history traits may vary geographically in a
diversity of species from insects to mammals (Denno and Dingle,
1981; Dunham et al. 1988; Stearns, 1992; Du et al. 2005). This
geographic variation in life history is thought to be associated with
the change in environmental factors such as temperature, precip-
itation and food availability along geographic clines. In the light of
the findings from life history comparisons, investigators carry out
manipulative experiments (e.g. environmental-factor manipulation
and reciprocal transplant experiments) to further confirm that, in
addition to genetic effects, these environmental factors do affect
life history traits (Niewiarowski and Roosenburg, 1993; James and
Whitford, 1994; Seigel and Ford, 2001; Du, 2006). Therefore,
comparative studies on life history provide cues to identify the
causes of life history variation, and are thus the first step in un-
derstanding life history evolution.
: þ86 10 64807099.
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The majority of studies on geographic variation in life history
focus on the variation in large scales such as latitudinal or altitu-
dinal clines, because the drastic change in environmental factors
(e.g. temperature) along these clines may induce significant life
history variation (e.g. Niewiarowski, 1994; Sears and Angilletta,
2004; Du et al. 2005). However, life history variation among
geographically close populations has received much less attention,
probably because investigators are apt to assume that the differ-
ence in environmental factors is too small to induce measurable
life history variation among geographically close populations of
vertebrates. In contrast to this assumption, environmental factors
may differ significantly in geographically close localities even
within a single climatic zone due to the change of temperature,
topography and vegetation, and such environmental differences
may induce life history variation (Rohr, 1997; Skelly, 2004;
Ruttenberg et al. 2005; Robbins, 2010; Kim et al. 2012; Shine et al.
2012). Life history comparisons among geographically close
conspecific populations may shed light on our knowledge of life
history evolution. Furthermore, such studies may demonstrate
ecological divergence among populations driven by environmental
selective pressures, and therefore improve our understanding of
local speciation.
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Reproductive output may differ among geographically separate
populations of the same species. For example, individuals living at
cold regions tend to produce larger clutches with bigger eggs than
do those at warm regions (e.g. Forsman and Shine, 1995; Ji et al.
2002; Du et al. 2005). This among-population difference in repro-
ductive output is a result of combined effects of genetic determi-
nation and phenotypic variation in response to environmental
changes. Previous studies have shown that a number of intrinsic
and extrinsic factors (e.g. adult body size, temperature, food avail-
ability, photoperiod) play an important role in determining repro-
ductive traits in most organisms (Stearns, 1992; Liu et al., 1996;
Zhao et al., 2011). For example, large females tend to produce more
and/or larger eggs, leading to greater reproductive output (e.g.
Bonnet et al. 2000; King, 2000; Du et al. 2005). Females provided
with abundant food may produce more eggs than those with less
food (e.g. James and Whitford, 1994; Du, 2006). These findings
imply that reproductive strategies could even vary among
geographically close populations if the females of these populations
experience distinct environments.

Incubation period is a critical reproductive trait in oviparous
reptiles, because it determines the embryo’s duration of exposure
to disadvantageous conditions in nests (e.g. predation and extreme
temperature or moisture), and the time of hatching (a determinant
of hatchling fitness in many reptile species: Moreira and Barata,
2005; Olsson and Shine, 1997; Warner and Shine, 2007). Incuba-
tion period may differ among geographic populations within a
species, with, for instance, shorter incubation period for eggs from
cold environments than from warm environments when the eggs
are incubated at identical temperatures (Ewert, 1985; Oufiero and
Angilletta, 2006; Liefting et al. 2009). The shortened incubation
period for eggs from cold environments is due to advanced
embryogenesis prior to oviposition in some species but fast em-
bryonic development during incubation in other species (Oufiero
and Angilletta, 2006; Du et al. 2010; Sun et al. 2012). However,
we do not know whether incubation period differs among
geographically close populations or not, let alone physiological
mechanisms underlying any among-population variation in incu-
bation period.

We captured gravid toad-headed lizards (Phrynocephalus
przewalskii) from three geographically close populations and
brought them to the laboratory for oviposition to understand
among-population variation in reproductive investment (e.g.
clutch size, egg mass, and relative clutch mass). In addition, we
compared incubation period of eggs from different populations to
identify the potential ecological causes (environment) and physi-
ological mechanisms (heart rate and developmental stage at
oviposition) underlying any among-population difference in in-
cubation period. With our reproductive and environmental data,
we aim to test the hypothesis that geographically close pop-
ulations can show different reproductive strategies if environ-
mental factors vary among populations. We discuss our finding
with regard to existing theory based on large scale environmental
influences.

2. Materials and methods

2.1. Study species

Toad-headed lizards (P. przewalskii) are small oviparous liz-
ards (up to 60 mm snout-vent length) that are widely distributed
in Gobi desert of northern China and adjacent Mongolia
(Urquhart et al., 2009). Reproductive cycles of males and females
of this species have been found to be associated with environ-
mental factors like photoperiod (Liu et al., 1996; Zhao et al.,
2011).
2.2. Animal collection and environmental factors

We collected adult lizards in May, 2011 from three populations
in the area of Gobi desert, Western China: Alax Zuoqi (38�500 N,
105�370 E) (40\ and 25 _), Alax Youqi (39�130 N, 101�590 E) (22\
and 15_), and Shandan (38�350 N, 101�210 E) (31\ and 20_). All
captured lizards were transferred to Institute of Zoology (Beijing).
The animals were palpated around the abdomen to determine
reproductive status (about 30% of females conceived eggs), and
were then housed in plastic terraria (600 � 300 � 400, L �W � D
mm) filled with 50 mm of moist sand. These terraria were kept in a
room with a temperature of 24 � 1 �C and a light cycle of 12L:12D
(0700 h on and 1900 h off). Each terrarium housed 6e8 gravid
females and five adult males. A 100 W light bulb was suspended
50 mm above each terrarium to provide opportunities for behav-
ioural thermoregulation from 0800 to 1600 h. Food (mealworm,
Tenebrio molitor and crickets, Acheta domesticus, dusted with
mixed vitamins and minerals) and water were provided ad libitum
for adult lizards. The experiment was carried out between May
15th and July 15th.

We collected monthly average ambient temperatures and
average precipitation for the three localities from the website of
weather.news.sina.com.cn. Insect abundance was surveyed with
pitfall traps (20 traps; 200 � 100 � 100 mm) placed in the habitat
where the lizards were collected. The traps were set for a 24-h
period and the mass of all the insects in each trap was weighed to
0.01 g. We searched lizards in walking-velocity of 0.5 m/s between
1000 h and 1500 h to estimate the relative population density of
lizards, which was calculated as the number of individuals
encountered per hour during the field search. Relative food avail-
ability was estimated by dividing insect mass by lizard population
density.

2.3. Maternal body size and reproductive life history

All lizards were measured for snout-vent length (SVL) to
0.5 mm, mass to 0.01 g, and toe-clipped for individual identifica-
tion. Relative clutch mass (RCM) was calculated as the ratio of
clutch mass to maternal post-oviposition mass. In the laboratory,
we palpated the abdomens of each female every five days, and any
animal with oviductal eggs was transferred to a small glass ter-
rarium (200� 150� 200mm) filled with 20mm-depthmoist sand.
Each small terrarium was checked at least three times a day for
freshly laid eggs. When laid clutches were found, eggs were
counted and weighed (�0.001 g) promptly so as to minimize po-
tential changes in mass due towater exchange. Postpartum females
were returned to their original terraria.

2.4. Embryonic development

We determined the embryonic stage at oviposition according to
the classification scheme of Dufaure and Hubert (1961) by dis-
secting one egg that was randomly selected from 6 to 9 clutches in
each population. The remaining eggs were placed in plastic boxes
(160 � 115 � 40 mm) filled with moist vermiculite (�220 KPa, 1 g
water/1 g vermiculite) and incubated at 28 �C. Incubation period
was calculated as the number of days between oviposition and
hatching.

We measured heart rates of embryos (beats per minute, bpm) at
approximately halfway (day 15) through the total incubation period
using an infrared heart rate monitor (Buddy Digital Egg Monitor:
Avian Biotech, Cornwall, UK; see detailed procedures in Du et al.,
2009). The eggs were acclimated in an incubator set at 28 �C for
2 h prior to being placed individually on the Buddy egg monitor
(inside the incubator) to record heart rates.

http://weather.news.sina.com.cn


Fig. 1. Differences in environmental factors among the three localities where the toad-
headed lizards, Phrynocephalus przewalskii, were collected. (a) monthly average
ambient temperatures (b) monthly average precipitation, (c) food availability. Means
with different letters above the error bars or after the names of the sites in the legends
are statistically different (Tukey’s test). Data on temperature and precipitation were
obtained from weather.news.sina.com.cn. Food availability was calculated as the ratio
of insect mass to lizard population density.
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2.5. Statistical analysis

We only used the data on the first clutch to test for among-
population differences in reproductive traits, because the majority
of females only laid one clutch in the laboratory (95% for Alxa Zuoqi
population, 81% for Alxa Youqi population, and 94% for Shandan
population). Friedman ANOVA was used to test for differences in
monthly mean temperature and precipitation among the three lo-
calities. We used one-way ANOVAs to determine among-population
differences in food availability, female body size, clutch size, egg
size, clutch mass, RCM, heart rates and incubation period. Correla-
tion was used to analyse the relationship between heart rate and
incubation period. ANCOVAs were conducted to determine among-
population differences in clutch size, egg size and clutch mass with
female body size as a covariate, and to assess differences in incu-
bation period between populations with heart rate as a covariate. To
avoid pseudoreplication, all analyses were conducted on clutch
means for heart rate and incubation period. A median test was used
to compare differences in embryonic stages at oviposition between
populations. All values are reported as the mean �SE.

3. Results

3.1. Environmental factors

Temperature, precipitation and food availability differed among
the three geographically close populations. Annual average tem-
perature was higher in Alxa Zouqi and Alxa Youqi than Shandan
(x2 ¼ 22.55, df ¼ 2, P < 0.00001, Fig. 1a). Annual precipitation was
greater in Alxa Zouqi and Shandan than in Alxa Youqi (x2 ¼ 20.36,
df ¼ 2, P < 0.0001, Fig. 1b). Relative food availability was highest in
Shandan, lowest in Alxa Zouqi, with Alxa Youqi in between
(F2,30 ¼ 18.94 P < 0.00001, Fig. 1c).

3.2. Body size and reproductive traits

Body size was greater in Alxa Youqi and Shandan populations
than in Alxa Zouqi population (SVL: F2,90 ¼ 7.66, P < 0.001; Body
mass: F2,90 ¼ 7.96, P < 0.001) (Fig. 2). Clutch size, clutch mass and
egg size all differed among the populations (Clutch size:
F2,90 ¼ 9.55, P < 0.001; Clutch mass: F2,90 ¼ 15.89, P < 0.00001;
Mean egg mass: F2,90 ¼ 3.49, P ¼ 0.03). The clutch size and mass
were greater in Shandan population than in Alxa Zuoqi and Alxa
Youqi populations (Fig. 3a, b). Females from Shandan and Alxa
Zuoqi populations laid larger eggs than those from Alxa Youqi
population (Fig. 3c). These among-population differences were still
significant even after the effect of maternal size was statistically
removed (Clutch size: F2,89 ¼ 4.19,P ¼ 0.02; Clutch mass:
F2,89 ¼ 8.59, P < 0.001; Mean egg mass: F2,89 ¼ 3.17, P ¼ 0.04). As a
result, the reproductive effort (measured as relative clutch mass,
RCM) also differed significantly among the populations
(F2,89 ¼ 16.99, P < 0.00001), with higher RCM in Shandan popula-
tion than in Alxa Zuoqi and Alxa Youqi populations (Fig. 3d).

3.3. Embryonic development

Incubation period was longest for eggs from the Alxa Zuoqi
population, shortest for eggs from the Alxa Youqi population, with
eggs from Shandan population in between (F2,34 ¼ 5.92, P < 0.01;
Fig. 4a). The embryonic stage at oviposition was earliest in the Alxa
Zuoqi population and latest in the Shandan population, with the
Alxa Youqi population in between (x2 ¼ 7.43, df ¼ 2, P ¼ 0.02;
Fig. 4b). Heart rate was negatively related to incubation period
(r ¼ �0.39, F1,26 ¼ 4.67, P < 0.05), but did not differ statistically
among the three populations (F2,25 ¼ 1.46 P ¼ 0.25) (Fig. 4c). The
among-population difference in incubation period was still signif-
icant (F2,24 ¼ 5.78, P < 0.01) after the effect of heart rate on incu-
bation period had been removed by an ANCOVA including heart
rate as a covariate.

4. Discussion

Previous studies have demonstrated life history variation over a
large geographic scale, such as latitudinal and altitudinal clines in
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Fig. 2. Snout-vent length and post-partum body mass of toad-headed lizards, Phry-
nocephalus przewalskii, from three geographically close populations in Gobi, China.
Data are expressed as means �1 SE. Means with different letters above the error bars
are statistically different (Tukey’s test). Sample sizes for the Alxa Zuoqi, Alxa Youqi, and
Shandan populations were 40, 22 and 31, respectively.
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reptiles (Dunham et al. 1988; Niewiarowski, 1994) as well as in
other animals from insects to mammals (Denno and Dingle, 1981;
Stearns, 1992). Our study indicates that life history traits can vary
significantly even among geographically close populations (only
110e370 km apart in our samples). The among-population
Fig. 3. Geographic variation in clutch size (a), clutch mass (b), egg mass (c), and relative clut
least square mean �1 SE (SVL as the covariate). Means with different letters above the error
and Shandan populations were 40, 22 and 31, respectively.
variation not only exists in maternal body size and reproductive
output, but also in incubation period and developmental stages of
embryos at oviposition.

In maternal body size there exists a considerable among-
population variation in a number of animal species ranging from
insects to mammals (Patton and Brylski, 1987; Stillwell et al. 2007;
Louzao et al. 2008). Along a latitudinal cline, for instance, body size
is larger in high-latitude populations than low-latitude populations
inmany species, a trend known as Bergmann’s rule (e.g. Ashton and
Feldman, 2003; Angilletta et al. 2004; Sears and Angilletta, 2004).
We found that maternal body size varied among geographically
close populations in P. przewalskii. However, the ultimate and
proximate mechanisms underlying the variation in body size can
not be identified until we have gathered more data related to such
mechanisms. These data include, but are not limited to, the growth
rate and age at maturity of post-hatching individuals, and the se-
lective forces driving body size evolution among the populations in
this species (Angilletta et al. 2004; Du et al. 2012).

As reported in many other lizard species (Du et al. 2005; Ji et al.
2002; Pincheira-Donoso and Tregenza, 2011), large females laid
more and larger eggs than small females in P. przewalskii. None-
theless, the among-population difference in reproductive output
was not entirely attributable to body size variation. This result
suggests that other factors in addition to body size also contribute
to the variation in female reproductive output. Therefore, the
optimal reproductive energy allocated by females could differ
among populations. Female P. przewalskii from Shandan population
produced more and larger eggs than other populations, and thus
had higher reproductive efforts (RCM) (Fig. 3). In the other two
populations, reproductive efforts were similar, but the trade-off
between egg size and number seems different. Females tended to
produce more eggs in Alxa Youqi, but larger eggs in Alxa Zuoqi
(Fig. 3).

Incubation period is not only determined by developmental
stage of embryos at oviposition, but is also a function of heart rate,
because there is likely a fixed number of heart beats during
ch mass (RCM) (d) of the toad-headed lizards, Phrynocephalus przewalskii. Graphs show
bars are statistically different (Tukey’s test). Sample sizes for the Alxa Zuoqi, Alxa Youqi,



Fig. 4. The incubation period (a), embryonic stage at oviposition (b) and heart rate (c)
of the toad-headed lizards, Phrynocephalus przewalskii. Eggs were incubated at 28 �C,
and heart rates were measured at 28 �C approximately halfway through the incubation
period. Graphs show mean values �1 SE (SVL as the covariate). Means with different
letters above the error bars are statistically different (Tukey’s test). Sample sizes for the
Alxa Zuoqi, Alxa Youqi, and Shandan populations were 13, 7 and 17 for incubation
period, 11, 6 and 11 for heart rate, and 8, 9 and 6 for embryonic stage at oviposition,
respectively.

Table 1
Summary by rank of environmental factors and reproductive traits of toad-headed
lizards, Phrynocephalus przewalskii, among three geographically close populations
in Gobi, China. Ranks were determined by statistical results. Different categories
denote significantly different values unless otherwise noted (i.e. medium (NS) de-
notes a middle value that was not significantly different than the higher and lower
values).

Trait Alxa Zuoqi Alxa Youqi Shandan

Environmental factors
Ambient temperatures High High Low
Average precipitation High Low High
Food availability Low Medium High

Reproductive traits
Body size Small Medium (NS) Large
Clutch size Small Medium (NS) Large
RCM Small Small Large
Egg size Medium (NS) Small Large
Incubation period Long Short Medium (NS)
Embryonic stage Early Medium (NS) Late
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incubation (Du et al. 2009). Our data indicated that the shortened
incubation period in Alxa Youqi population was due to advanced
embryogenesis completed prior to oviposition rather than higher
embryonic heart rates during incubation. Embryos from Alxa Youqi
population hatched 3 days earlier than those from Alxa Zuoqi
population, because the embryos were 1 stage later in development
at oviposition in Alxa Youqi population than Alxa Zuoqi population.
In contrast, compared with Alxa Youqi population, embryos from
Shandan population hatched 2 days later, but had similar devel-
opmental stages at oviposition. The relatively low heart rate in the
Shandan population, although not statistically significant, was
likely enough to cause the two day delay in hatching. Heart ratewas
negatively related to incubation period in this lizard, although
other physiological traits that may affect metabolic rate. For
example, as reported in an American lizard, Sceloporus undulatus
(Du et al. 2010), heart size could be smaller in Shandan population
than Alxa Youqi population, leading to low metabolic (develop-
mental) rates.
Do environmental differences account for life history variation
among geographically close populations? On the basis of the rank
of environmental and life history variables among the three pop-
ulations (Table 1), we identify the most probable environmental
factors determining the among-population patterns of life history.
First, body size and reproductive traits are more closely associated
with food availability than temperature and precipitation in our
geographically close populations. Females were larger and pro-
duced more and larger eggs in localities with high food availability
than those with low food availability (Table 1). Comparative and
manipulative experiments on food availability have confirmed that
female lizards can lay more eggs by increasing clutch size or clutch
frequency when food is sufficient (James and Whitford, 1994; Shou
et al. 2005; Du, 2006). By contrast, reproductive output is likely
associated with temperature in widespread species along lat-
itudinal clines. Females from high-latitude populations tend to
produce more and larger eggs than those from low-latitude pop-
ulations (Stearns, 1992; Angilletta et al. 2006), probably because
larger offspring survive better in cold environments than do
smaller offspring (Yampolsky and Scheiner, 1996; Fischer et al.
2003). The role that food availability plays along latitudinal gradi-
ents in reproductive traits should not be ruled out, however, as it is
not well understood. Second, the among-population variation in
incubation period is most closely associated with precipitation
rather than temperature and food availability in our study. Envi-
ronmental moisture might be able to shape the evolution of incu-
bation period, possibly through its relationwith embryonic stage at
oviposition or embryonic heart rate, with lizards from dry envi-
ronments having shorter incubation periods than those from wet
environments (Table 1).

Our comparative study found that reproductive life history
traits differed among geographically close populations of desert
lizards. This among-population difference could be caused by (1)
genetic effects, as a result of adaptation to local environment; (2)
maternal effects, attributable to maternal nutrition and energy
accumulation in the previous season or just prior to our collection
(James and Whitford, 1994; Bonnet et al. 2001); or (3) plasticity,
simply due to phenotypic variation in response to environmental
differences among populations. Future studies using common
garden and reciprocal transplant experiments would be able to
identify these mechanisms underlying the among-population dif-
ference in life history traits. Investigations on life histories of the
lizards in Gobi are thus encouraged to facilitate inter-continent
comparisons of adaptive strategies of lizards in response to
desert environments.
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