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Fourteen perfluoroalkyl substances (PFASs) were measured in serum of the highly endangered captive
Chinese alligators, whole body homogenates of six kinds of fish (alligator prey species), and pond water
(alligator habitat) in the Anhui Research Center for Chinese Alligator Reproduction. Six PFASs, including
PFOS and five perfluorinated carboxylates, were detected in all alligator samples. The most dominant
PFAS was PFUnDA, with a mean value of 31.4 ng/mL. Significant positive correlations were observed
among the six PFASs, suggesting that they shared similar sources of contamination. Significantly higher
PFOS and PFUnDA levels were observed in males, but the other four PFCAs did not differ between
genders. An age related PFAS bioaccumulation analysis showed a significant negative correlation of the
concentrations for five PFCAs to age, which means that higher concentrations were found in younger
animals. Bioaccumulation factors (BAF) in fish for PFASs ranged from 21 to 28,000, with lower BAF for
PFOA than that for longer carbon chain PFCAs, including PFUnDA, PFDA, and PFNA.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Poly-/perfluoroalkyl substances (PFASs), which have been man-
ufactured for more than 50 years, are comprised of a diverse group of
chemicals used in a variety of specialized consumer and industrial
products, such as surfactants and surface protectors in textiles, car-
pets, paper products, fire-fighting foams, food containers, and up-
holstery (Prevedouros et al., 2006). PFASs include perfluorinated
acids and precursors (e.g., polyfluorinated telomer alcohols, sulfon-
amides); the former one can be further divided into two main
groups: perfluoroalkane sulfonic acids (PFSAs) and perfluorinated
carboxylic acids (PFCAs). Given the high energy of the carbon—
fluorine bond, PFASs are resistant to hydrolysis, photolysis, biodeg-
radation, and metabolism. These compounds have been found on a
global scale in air, water, and house dust (Boulanger et al., 2005;
Giesy and Kannan, 2002; Hansen et al., 2002; Harada et al., 2006;
Shoeib et al., 2005; So et al., 2004); they have also been reported in

* Corresponding authors.
E-mail addresses: nob.yamashita@aist.go.jp (N. Yamashita), daijy@ioz.ac.cn
(J. Dai).

0269-7491/$ — see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.envpol.2013.04.020

wildlife species including marine animals, sea birds, fish, and
terrestrial mammals (Giesy and Kannan, 2001; Kannan et al., 2002a,
2002b, 2002c; Martin et al., 2003a, 2004; Smithwick et al., 2005).
Among the PFASs analyzed in different environmental matrices,
perfluorooctane sulfonate (PFOS) has been frequently found at the
highest concentrations (Giesy and Kannan, 2001; Kannan et al,,
2001, 2002a, 2002b, 2002c; Martin et al., 2004; Moody et al.,
2002); other PFASs, such as perfluorohexane sulfonate (PFHXS),
perfluorododecanoic acid (PFDoDA), perfluoroundecanoic acid
(PFUNDA), perfluorodecanoic acid (PFDA), perfluorononanoic acid
(PFNA), and perfluorooctanoic acid (PFOA) have been detected at an
order of magnitude lower than that of PFOS in many biological
samples (Houde et al., 2006b). Studies have suggested that PFSAs are
more bioaccumulative than PFCAs having the same fluorinated
carbon chain length; PFCAs with fluorinated carbon chain length
greater than seven are bioaccumulative, and the biomagnification
factors increase with the number of the fluorinated carbon (Conder
et al., 2008; Kannan, 2011). Animal exposure studies have suggested
that PFASs (e.g., PFOA) can cause various toxic effects, including
hepatotoxicity, developmental toxicity, immunotoxicity and hor-
monal effects (Lau et al., 2007; Peters and Gonzalez, 2011). Although
the effect on health from long-term environmental PFAS exposure is
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still relatively unknown, given the ubiquitous presence and persis-
tence of these chemicals and the toxicity observed in animal studies,
these environmental contaminants might present a health risk to
wildlife.

Fluorotelomer alcohols (FTOHs) are an indirect source of PFCAs;
they are emitted through industrial activities and can form PFASs
upon degradation (Ellis et al., 2004). For this reason, animals residing
in environments close to (or in the vicinity of) industrial hotspots
might accumulate high levels of PFASs; the Chinese alligator (Alli-
gator sinensis) may be one such example. The Chinese alligator is one
of the most endangered species among the world’s twenty-three
crocodilian species (IUCN Red List: CR Alc, D (critically endan-
gered)). Historically, these animals were distributed across relatively
wide areas around the lower Yangtze River in China. Habitat
destruction is one of the major causes for their decline, particularly
the transformation of many wetland areas into agricultural land.
Deliberate killing of alligators also results in significant negative ef-
fects. In addition, several studies have shown that environmental
factors, such as the application of chemical fertilizers and in-
secticides, might affect the health of the Chinese alligators
(Thorbjarnarson and Wang, 1999). The remaining wild individuals
are now restricted to a few small isolated areas in Anhui and Zhejiang
Provinces (Thorbjarnarson et al., 2002); the total wild population is
believed to be less than 200. Fortunately, breeding and growth in
captivity has been occurring successfully since 1979 at the Anhui
Research Center for Chinese Alligator Reproduction (ARCCAR),
Xuancheng City, Anhui Province; the captive population is now over
10,000 animals. With rapid economic development, China is facing
increasing problems with a variety of environmental contaminants
including PFASs (Bao et al., 2010). Captive animals residing near ur-
ban industrialized areas might have increased exposures to the
contaminants, possibly adversely affecting their health.

The objectives of the current study were: a) to assess exposure
of PFASs in Chinese alligators by measuring the concentrations of
PFASs in alligators from a conservation center situated in an ur-
banized region of China; b) to evaluate any gender- and age-specific
PFASs accumulation; and c) to explore the sources of PFAS
contamination.

2. Materials and methods
2.1. Sample collection

Sera samples (3—5 mL per animal) were collected by a veterinarian using sterile
syringes and needles from the caudal vein of 48 shallow hibernant crocodiles in
ARCCAR in November 2009 (Supporting Information (SI) Fig. S1). For serum isola-
tion, samples were allowed to sit at room temperature for 30 min to allow the blood
to clot. Separation of clots was accomplished by centrifugation at 1000—1300 g at
4 °C for 15—20 min. The serum was removed and dispensed in polypropylene
cryovials aliquots of 1 mL. The alligators with different age stages (2—9 years, 10—15
years, and 16—21 years) were raised in divided areas in the ARCCAR, though the
exact age for each alligator was not available. The gender, age groups, weight, and
length of the animals were recorded (Table 1). The blood collection protocol was
approved by the Institute of Zoology, Chinese Academy of Sciences, Institutional
Animal Care Committee and State Forestry Administration of China. Silver carp
(Hypophthalmichthys molitrix), oriental river prawn (Macrobrachium nipponense),
northern snakehead fish (Channa argus), tire track eel (Mastacembelus armatus),
crucian carp (Carassius carassius), and common carp (Cyprinus carpio), which all

Table 1
Demographic information of the Chinese alligator samples.

Gender Age Number Weight (kg) Length (cm)

Female 2-9 14 6.6 + 0.9 1234 £ 6.9
10-15 6 130+ 19 151.0 £ 7.5
16-21 6 18.8 + 2.1 164.2 £ 5.1

Male 2-9 9 6.5+23 1233 £ 127
10-15 7 176 + 1.4 168.0 +5.3
16-21 6 261 +74 184.0 £ 154

serve as part of the alligator’s diet, were collected from the habitat pond of the al-
ligators. In addition, water (2 x 4 L) from the pond was sampled at the same time. All
samples were kept at —20 °C until analysis.

2.2. Perfluoroalkyl substance analysis

Thawed alligator serum, water, and homogenized whole fish and prawn samples
were analyzed for fourteen PFASs; four PFSAs: perfluorodecane sulfonate (PFDS),
PFOS, PFHxS, and perfluorobutane sulfonate (PFBS); and ten PFCAs: per-
fluorotetradecanoic acid (PFTeDA), PFDoDA, PFUnDA, PFDA, PFNA, PFOA, per-
fluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic
acid (PFPeA), and perfluorobutanoic acid (PFBA). Before extraction, 1 mL sera sam-
ples were spiked with an internal standard mixture (['C4]-PFOA, [*>Cs]-PFNA,
[3C,]-PFDA, ['3C4]-PFOS and ['3C4]-PFBA) to check an overall recovery. Extraction of
PFASs from sera samples was achieved using acetonitrile, and the extract was sub-
jected to further purification using the SPE-Oasis-WAX-method (details in SI Infor-
mation). Final extracts were analyzed using an Agilent HP1100 liquid
chromatography system interfaced with a Micromass (Beverly, MA) Quattro Ultima
Pt mass spectrometer, which was operated in electrospray negative ionization mode
as previously reported (Taniyasu et al., 2005). In brief, a 10 pL aliquot of the sample
extract was injected onto a guard column (XDB-C8, 2.1 mm i.d. x 12.5 mm, 5 um;
Agilent Technologies, Palo Alto, CA) connected to a Betasil C18 column (2.1 mm
i.d. x 50 mm length, 5 um, end-capped; Thermo Hypersil-Keystone, Bellefonte, PA).
The mobile phases consisted of 2 mM ammonium acetate and methanol, with 10%
methanol serving as the starting mobile phase.

2.3. Quality assurance and quality control

Data quality assurance and quality control measures included instrumental
blanks, procedural (method) blanks, matrix spikes, and duplicated analysis. Proce-
dural blanks (using Milli-Q water as a matrix) and recoveries (Milli-Q water spiked
with native standards) were assessed following the same procedure as described
above with each group of extractions. The matrix spike recoveries for native com-
pounds ranged from 60 to 108%. More detailed information for the values of LOQs,
instrumental blanks, cartridge blanks, procedural blanks, procedural recoveries, and
matrix spike recoveries, as well as MS parameters, are given in SI Table S1. The limits
of quantification (LOQs) were 0.01 ng/mL for the all PFASs except PFBA (0.05 ng/mL).
The blanks were all below corresponding LOQs. An external calibration curve was
prepared from a series of PFAS concentrations (10, 50, 200,1000, 5000 and 20,000 pg/
mL), and standard deviations of the measured values to the theoretical values were
less than 20%. Method LOQs were determined by spiking 0.01, 0.05, and 0.1 ng into the
test sera samples, the spiked samples went through the whole analytical procedures.
This method LOQs experiment was performed in triplicate. The method LOQs (S/
N > 10) were found to be 0.01 ng/mL for PFOS, PFHxS, and PFOA; 0.05 ng/mL for
PFHpA, PFNA, PFDA, PFUnDA, and PFDoDA; and 0.1 ng/mL for PFTeDA. The recoveries
of these compounds between before spike/post spike were between 73 and 95%, and
the relative standard deviations were between 5 and 12%. The concentrations of
PFASs in the experimental samples were not corrected for recoveries.

2.4. Statistical analysis, bioaccumulation factor, and biomagnification factor
calculation

The normality of the data was analyzed using a Shapiro—Wilk test. Mann—
Whitney U or Kruskal-Wallis non-parametric tests (two-tailed) were used to
compare PFAS concentrations between genders or among different age stages.
Spearman’s rho rank-order correlation analysis was performed to examine the
relationship between PFASs. Linear regression was used to evaluate relationships
between body length (used as a proxy for age) and natural log-transformed values
for PFAS concentrations. A two-way ANOVA was used to investigate the relationship
of PFASs between genders and age. All statistical analyses were conducted with SPSS
software (Version 14.0 for windows, SPSS Incorporate, Chicago, IL). The bio-
accumulation factors (BAFs) of PFASs were calculated for fish and prawns by dividing
their PFAS concentration with the concentration of water. The biomagnification
factors (BMFs) were calculated for the alligator relative to each of its prey items by
dividing mean alligator sera concentration with mean concentration of the whole
fish or prawn homogenates.

3. Results and discussion
3.1. PFAS levels in the Chinese alligators

The sera concentrations of six PFASs (PFOS, PFTeDA, PFDoDA,
PFUNDA, PFDA, and PFNA) were all above the LOQ; while another
six PFASs (PFHxS, PFBS, PFOA, PFHpA, PFPeA, and PFBA) were
detected in alligator sera samples with a detection frequency of
52%, 21%, 69%, 17%, 31%, and 29%, respectively. Detailed statistical
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Table 2
Summary of frequency of detection (%), PFAS concentrations (ng/mL), and per-
centage of PFAS to total PFAS (%) in serum of Chinese alligators (n = 48).

Frequency = Mean Std. Geometric Range Percentage

of detection deviation mean in total

(%) PFASs (%)
PFOS 100 28.7 10.1 26.7 6.7-61.8 30.9
PFHxS 52 0.2 03 0.0 0-1.5 0.2
PFBS 21 0.004 0.009 0.0 0-0.04 0.004
PFTeDA 100 11 1.6 0.4 0.1-6.2 1.2
PFDoDA 100 2.7 1 25 0.8-5.9 29
PFUnDA 100 314 11.7 28.8 7.8—63.0 33.8
PFDA 100 26 11.1 231 4.7-56.0 279
PFNA 100 29 2.7 22 02-188 3.1
PFOA 69 0.02 0.02 0.0 0-0.1 0.02
PFHpA 17 0.003  0.007 0 0-0.03 0.003
PFPeA 31 0.005 0.01 0 0-0.1 0.006
PFBA 29 0.008 0.01 0 0-0.1 0.009

Samples with concentration below LOQ were treated as zero.

information of these twelve PFASs is given in Table 2. No detectable
PFDS or PFHxA were found in any of the sera samples. The con-
centrations of PFOS, PFTeDA, PFDoDA, PFUnDA, PFDA, and PFNA
ranged from 0.1 to 63.0 ng/mL. Results showed that PFUnDA (mean
31.4 ng/mL) had the greatest concentrations among the PFASs; it
ranged from 7.8 to 63.0 ng/mL, and accounted for 33.8% of total
PFASs for all twelve PFASs. The second and third dominant PFASs
were PFOS (28.7 ng/mL) and PFDA (26 ng/mL), accounting for 30.9%
and 27.9% of the total PFASs, respectively. In decreasing order of
abundance were PFNA (2.9 ng/mL), PFDoDA (2.7 ng/mL), and
PFTeDA (1.1 ng/mL), which were an order of magnitude lower than
the concentrations of PFUnDA, PFOS, and PFDA; these compounds
contributed 7.2% to the total PFASs.

Sera PFOS concentrations in the alligators of this study were in a
similar range to those found in other reptiles from other locations,
such as Kemp's ridley sea turtles (Lepidochelys kempii) and Log-
gerhead sea turtles (Caretta caretta) from the southeastern coast of
USA (Keller et al., 2005). Keller’s study has shown that PFOS was the
most dominant PFAS in the two kinds of turtles, with concentration
an order of magnitude higher than those of other PFASs. However,
in the present study, PFUnDA was the dominant PFAS. Although
PFUnDA has been reported in biota (Guruge et al., 2005; Hoff et al.,
2004), few studies (Muir et al., 2004) have reported PFUnDA as
being the most dominant PFAS in wildlife samples. Concentrations
of PFDA and PFOS were in our study in the same order of magni-
tude. PFUnDA and PFDA contributed 60.3% to total PFASs. Some
studies have shown that PFNA was the dominant PFCA in the livers
of polar bears and Amur tigers (Li et al., 2008; Smithwick et al.,
2005), however, in the present study, PFNA contributed to only
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3.8% to the total PFASs. Several studies have shown detectable PFOA
concentrations in wildlife and human sera samples (Kannan et al.,
2004, 2005b). In the present study, only 69% of sera samples
showed detectable PFOA concentrations, with the greatest level at
only 0.1 ng/mL. Short-carbon chain PFCAs, such as PFPeA, PFBA, and
PFHpA, only showed detectable concentrations in 31%, 29%, and 17%
of the sera samples, respectively; PFHXA was not detected in any
sample. PFASs with fluorinated carbon numbers greater than seven
are thought to be bioaccumulative; while those having less than
seven fluorinated carbons are less bioaccumulative and therefore
readily excreted (Martin et al., 20033, 2003b). The results of the
present study: relatively high concentrations of long-chain PFCAs
(C9-12, and C14) and relatively low concentrations of short-chain
PFCAs (C4-7), were consistent with this assumption.

3.2. Gender- and age-related PFAS bioaccumulation

The sera PFAS concentrations stratified by gender (26 female
and 22 male) and age (2—9, 10—15, and 16—21 years) are given in SI
Table S2. Gender- and age-related PFAS bioaccumulation analyses
were carried out with two way ANOVA using gender and age as
factors, followed by Tukey’s test. No interaction was observed be-
tween the two factors. Male alligators had significantly higher PFOS
(p = 0.006) and PFUNDA (p = 0.03) concentrations than females,
but no significant differences were observed for PFDA, PFDoDA,
PFNA, and PFTeDA between gender (Fig. 1A). However, reports on
the relationship between PFOS accumulation and gender are
inconsistent; some studies have reported no significant differences
in PFOS concentrations between genders (Ahrens et al., 2009;
Kannan et al., 2002c; Keller et al., 2005; Van de Vijver et al., 2007);
higher PFOS concentrations were found in female harbor porpoises
(Van de Vijver et al., 2003) but higher concentrations of PFOS were
observed in male snapping turtles collected from Michigan
(Kannan et al., 2005a).

Age-related PFAS bioaccumulation patterns were found for five
PFAS (p < 0.01), but not for PFOS (Fig. 1B). Sera samples from
younger animals (age: 2—9) had higher concentrations of PFTeDA,
PFDoDA, PFUnDA, PFDA, and PFNA. Since PFUnDA concentrations
were significantly different between genders and age groups in
alligators, age-related bioaccumulation patterns of PFUnDA by
gender were additionally shown in SI Fig. S2. Significant decrease in
PFUnDA concentrations was observed with the increase in age in
both genders (p < 0.01).

The age, sex and body-size of wild alligators and their re-
lationships were difficult or even impossible to attain. Studies had
observed their relationships in captive animals, and found that
body-size measurements, including total body length, were simple
and indirect estimators of age, though considerable evidences
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*k [110-15 years
50+ o [116-21 years

20 J‘I
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*% *%

Concentration (ng/mL)
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Fig. 1. Graphs showing the relationships of serum PFAS concentrations in subgroups of Chinese alligators by gender (A) and age (B). Data are expressed as mean + standard
derivation. Significant differences between gender or age groups are indicated by * for p < 0.05 and ** for p < 0.01.
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supporting high variation in body size for a given age in crocodil-
ians (Eaton and Link, 2011; Wu et al., 2006). In our study, the age of
the alligators at ARCCAR was not accurate, therefore, animal body
length was used as a proxy for age, and correlation analysis of body
lengths with PFASs was conducted. Among the Crocodylia family,
males are larger than females (Fitch, 1981; Platt et al., 2009); the
correlation analysis of length with PFASs was performed by gender
separately. Significant negative correlations were found between
length (age) and the five PFCA concentrations in both male and
female alligators, and significant negative correlation between
length (age) and PFOS was only found in females (Figs. 2 and 3).
Different relationships between age and PFAS levels have been
observed in wildlife previously; no significant correlations were
observed in gray and ringed seals from the Baltic or Mediterranean
Sea (for PFOS) (Kannan et al., 2001), in pandas (for PFOA and PFOS)
(Dai et al., 2006), or in Amur tigers (for PFOS and PFNA) (Li et al.,
2008); however, increased PFAS concentrations with age have
been observed in juvenile male bears (for PFOS, PFNA, and C10—C14
PFCAs) (Smithwick et al., 2005), in Arctic ringed seals (for PFDoDA
and PFOS) (Butt et al., 2007), and in ridley turtles (for PFOS) (Keller
et al., 2005); contrary, decreased PFAS concentrations with age
were found in bottlenose dolphins (Fair et al., 2012; Houde et al.,
2005) and juvenile harbor porpoises (Van de Vijver et al., 2003).
Although the reason for negative correlations between age and the
five PFCA concentrations in alligators was not clear, the somatic
growth dilution may be one of the contributors, which had been
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reported to occur in methyl-mercury studies in aquatic organisms,
such as in zooplankton (Karimi et al., 2007).

These inconsistent results in gender- and age-related PFAS
bioaccumulation in wildlife may relate to the complexity of the
PFAS bioaccumulation process, and some confounding factors likely
contribute to the pattern, e.g., food source. The captive alligators of
different age prey on different food, which might have different
degrees of PFASs contamination, and thus the observed bio-
accumulation pattern might come from different food source in the
captive alligators.

3.3. Relationships among PFASs

The results of non-parametric Spearman’s rho rank-order cor-
relation analysis could provide further information on the sources
of PFASs. Significant positive correlations were found among the six
PFASs (SI Table S3). The lowest correlations were observed between
PFOS and PFDA (correlation coefficient: r = 0.44, p < 0.01) and the
highest between PFDA and PFDoDA (r = 0.96, p < 0.01), respec-
tively. These findings suggest that these six PFASs have a similar
source of contamination. When the samples were stratified by
gender, significant positive correlations (r ranged from 0.66 to 0.96)
were observed among all six PFASs in the female subgroup,
whereas only five PFASs showed significant positive correlations (r
ranged from 0.70 to 0.97) in the male subgroup; no significant
correlations were found between PFOS and the other five PFASs in
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Fig. 2. Linear regression analysis of body length (used as a proxy for age) and PFAS concentrations in female Chinese alligators.
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Fig. 3. Linear regression analysis of body length (used as a proxy for age) and PFAS concentrations in male Chinese alligators.

the male subgroup. These results suggest different gender-related
bioaccumulation patterns for PFOS in Chinese alligators.

3.4. PFASs in water and fish

PFAS pollution is pervasive in eastern China, including the area
surrounding the lower reaches of the Yangtze River (So et al.,
2007; Yeung et al., 2008). Chinese alligators reside in environ-
ments close to highly industrialized areas and are likely exposed to
PFASs via dermal contact, consumption of contaminated water,
and ingestion of contaminated food. For reptiles, inhalation of
PFASs in air can also be a potential contributor to the observed
PFASs exposure burden in alligators. Fourteen PFASs were
measured in six kinds of fish samples (whole body homogenates)
and water from the pond where the alligators inhabited. Nine
PFASs, including PFOS, PFTeDA, PFDoDA, PFUnDA, PFDA, PFNA,
PFOA, PFHpA, and PFHxA, were detected in the food samples (SI
Table S4). Northern snakehead fish samples had the greatest total
PFAS concentrations (36.1 ng/g wet weight (w.w.)), followed by
silver carp (16.7 ng/g w.w.) and oriental river prawn (11.2 ng/g
w.w.). Different PFASs composition profiles were observed in the
fish samples (SI Fig. S3), e.g., in common carp, where the dominant
PFAS was PFHxA contributing 38.0% to the total PFASs. Detectable
concentrations of PFOS, PFUnDA, PFDA, PFNA, and PFOA were
found in pond water (SI Table S4). The dominant PFAS was PFOA,
which accounted for 53.4% of total PFASs, followed by PFOS (20.9%
of total PFASs) > PFNA (11.5%) > PFDA (8.5%) > PFUnDA (5.8%).

3.5. Bioaccumulation and biomagnifications

The concentrations of PFOS in fish ranged from 0.4 to 7.8 ng/g
w.w, which were approximately two to three orders of magnitude
greater than concentrations found in surface waters; the BAF for
PFOS was in the range of 180—3800 (Table 3). Our values were
within the range reported for lake trout exposed to PFOS under
laboratory conditions, as well as for wild aquatic organisms in the
Great Lakes (Kannan et al., 2005a; Martin et al., 2003a). Similar
ranges of BAFs were also obtained for PFUnDA, PFDA, and PFNA. The
BAF for PFOA was approximately one or two orders of magnitude
lower than that for PFOS (Table 3), and these results were similar to
the bioconcentration factor reported for PFOA in rainbow trout
exposed under laboratory conditions, which ranged between 4 and
27 (Martin et al., 2003a). The lower BAF of PFOA than that of
PFUnDA, PFDA, and PFNA may relate to the low bioaccumulation
potential of shorter carbon chain PFCAs than longer ones as well as
the shorter half-life of PFOAs in fish.

Since data on the tissue distributions of PFASs were not avail-
able, the extrapolation of concentrations detected in serum to the
entire body could be not conducted. The BMFs were calculated for
the alligator relative to each of its prey items by dividing mean
alligator sera concentration with mean concentration of the whole
fish or prawn homogenates. Although BMF calculated using whole
prey homogenates and alligator serum varied considerably (0.6—
200), they were >1 for all analytes in all prey species, except for
PFNA in silver carp (BMF Alligatorserym/Silver carpwhole = 0.6)



66 J. Wang et al. / Environmental Pollution 179 (2013) 61—67

Table 3

Bioaccumulation factors (BAFs) in fish and biomagnification factors (BMFs) in Chi-
nese alligator food web for PFASs at Anhui Research Center for Chinese alligator
Reproduction (ARCCAR).

PFOS PFTeDA PFDoDA PFUnDA PFDA PFNA PFOA

BAF*

Silver carp/water 3800 n.c n.c. 2100 1800 3400 120

Oriental river 450 n.c. n.c. 8500 3000 860 85
prawn/water

Northern 3000 n.c. n.c. 28,000 9600 2000 42
snakehead/water

Common carp/water 180 n.c. n.c. 610 160 140 n.c

Tire track eel/water 1100 n.c. n.c. 2700 820 930 59

Crucian carp/water 240 n.c. n.c. 1300 450 380 21

BMF®

Alligator/silver carp 3.7 110 6.2 26 17 0.6 n.c.

Alligator/oriental 31 22 2.7 6.5 10 3.0 n.c.
river prawn

Alligator/northern 46 3.2 1.1 2.0 3.2 13 n.c.
snakehead

Alligator/common 76 9.9 17 90 200 18 n.c.
carp

Alligator/tire 13 14 11 20 38 2.7 n.c.
track eel

Alligator/crucian 58 11 14 44 68 6.7 n.c.
carp

2 BAFs are based on PFAS measurements in whole fish or prawn homogenates and
in water samples.

b n.c.: not calculated because concentrations in part of the samples were <LOQ.

¢ BMFs are based on PFAS measurements in whole fish or prawn homogenates
and in alligator serum samples.

(Table 3). The BMF calculated by Houde et al. (2006a) using whole
prey homogenates and whole body burden dolphin concentration
estimation varied between <1 and 30 in the bottlenose dolphin
food web at Charleston. Since there is preferential PFAS partitioning
between blood and liver, BMFs using sera concentrations for alli-
gators, while using whole body homogenate for prey species, might
be overestimated in the present study. The diet species as well as
abundance of each species for alligators was not available, so a diet
weighted BMF could not be calculated, which affected the evalua-
tion of biomagnifications for alligators.

In conclusion, various levels of PFASs were found in serum of
Chinese alligators, demonstrating they were exposed to these
chemicals. The PFTeDA, PFDoDA, PFUnDA, PFDA, and PFNA con-
centrations showed a decreasing trend with the increase in age.
However, the present study was limited by a relatively small sample
size, which increased the possibility of potential selection biases.
Further study with larger sample sizes is necessary to address the
influence of age on PFAS accumulation and the biological conse-
quences of these chemicals on this endangered animal.
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