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ABSTRACT Examining ecological processes across spatial scales is crucial as animals select and use resources
at different scales. We carried out field surveys in September 2005, March–September 2006, and April 2007,
and used ecological niche factor analysis to determine habitat preferences for the giant panda (Ailuropoda
melanoleuca) across 4 spatial scales: daily movement, core range, home range, and seasonal elevational
migration. We found that giant pandas prefer conifer forest and mixed forest at higher than average
elevation (2,157 m) of study area in the 4 scale models. However, we also observed significant scale
differences in habitat selection. The strength of habitat preference increased with scale for the 2 disturbed
forests (sparse forest and fragmented forest), and decreased with scale for 0–308 gentle slope and south- and
north-facing aspect. Furthermore, habitat suitability patterns were scale-dependent. These findings high-
light the need to determine species–environment associations across multiple scales for habitat management
and species conservation. � 2012 The Wildlife Society.
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Examining ecological processes across numerous spatial
scales is widely recognized (Wiens 1989, Forman 1995,
Wu and Hobbs 2002) as animals select and use resources
at different scales (Kotliar and Wiens 1990, Bergin 1992,
Schmidt 1993, Ward and Saltz 1994, Boyce et al. 2003).
Habitat selection is now considered an inherently scale-
sensitive process, and researchers realize the need to investi-
gate multiple scales (Kie et al. 2002, Wilson et al. 2011).
However, in some cases, scales employed in habitat studies
were chosen arbitrarily and lacked biological relevance
(Wheatley and Johnson 2009). The influence of spatial scales
on the selection of habitat components is expected because
limiting factors vary with scale (Mayor et al. 2009). The need
for a sensible and biologically relevant spatial scale cannot be
overstated (Addicott et al. 1987, Wiens 1989, Kie et al.
2002), as failing to select the correct scale in spatial analyses
can lead to misinterpretations of data (Wiens 1989, Powell
1994, Bowyer et al. 1996).

One of the cornerstones of animal conservation is to un-
derstand the relationship between animals and their habitat
(Nams et al. 2006). Multi-scaled investigations of habitat use
are essential because different selection processes may oper-
ate at different scales (Luck 2002, Mitchell et al. 2001).
Selectivity at multiple scales has been observed in bears
(Mcloughlin et al. 2002, Nielsen et al. 2004), but these
studies did not explicitly test whether habitat preferences
vary at different biological scales. Habitat selection is a
hierarchical process that may yield various patterns depend-
ing on scales of investigation (Rettie and Messier 2000).
However, generalizations about the effect that scales will
have on habitat selection are few, because enormous varia-
tions in landscapes and patterns of processes influence re-
source selection (Boyce 2006). Landscape heterogeneity
measured at large spatial scales appears to be necessary for
characterizing habitat selection (Kie et al. 2002).
Wildlife absences, especially in the case of endangered and

rare species, may originate from chance, sampling error,
poor sampling effort, and stochastic demographic processes
rather than environmental incompatibilities (Hirzel et al.
2002), and do not necessarily reflect habitat unsuitability
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in landscape scales (Jaquiéry et al. 2008, Nicholson and Van
Manen 2009). Therefore, habitat selection analyses based on
only presence data are needed to avoid problems associated
with false absences (Hirzel et al. 2002). Ecological Niche
Factor Analysis (ENFA) uses only species presence data and
computes habitat suitability functions by comparing a spe-
cies’ distribution in ecogeographic space with that of entire
study area (Hirzel et al. 2002). This approach is based on
Hutchinson’s (1957) ecological niche theory and predicts the
potential distribution of a species using presence-only data
and habitat suitability maps (Hirzel et al. 2002). This tool is
valuable for managing animals that are rare and patchy, such
as the giant panda (Ailuropoda melanoleuca).
The giant panda is an elusive and highly endangered animal

inhabiting montane forest across southeastern China
(Schaller et al. 1985). For this species, the establishment
of a home range and decisions regarding movement within or
beyond an established home range may be influenced by a
range of environmental factors at different biological scales.
The majority of research on the giant panda has not consid-
ered multiple scale effects, and has been conducted at a small
spatial scale (i.e., the sampling unit <400 m2; Wei et al.
1997, 2000; Zhang et al. 2004), or across a single nature
reserve range (e.g., Ouyang et al. 2001, Liu et al. 2002,
Linderman et al. 2006). Conclusions from these studies
are valid only within the scale at which they were conducted
as many habitat characteristics are scale dependent.
Although home range characteristics such as maximum size

are informative, measures of spatial use within home ranges
and across scales are more valuable for effective management
(Gaillard et al. 2010). Comprehensive investigations of these
relationships must incorporate environmental variables at
multiple spatial scales since species’ responses to the envi-
ronment vary with scale (Grand and Cushman 2003). For
habitat selection and use in giant pandas, we derived 4 scales
of high relevance: 1) core area of home range—giant pandas
frequently visit as little as 10% of their home range (Schaller
et al. 1985); 2) daily movement—daily movement patterns
are dependent on slope and are energetically limited because
of pandas’ unusual bamboo diet; 3) home range—a scale at
the basis of many studies of habitat use; and 4) seasonal
elevational migration—giant pandas undertake a seasonal
elevational migration. Specifically, we aim to determine
what factors influence habitat selection of the giant panda
and at what scales giant pandas respond to environmental
heterogeneity. We also assess which categories of habitat
selection or scale are more relevant to giant panda manage-
ment and conservation.

STUDY AREA

Our study area covered 10,067 km2 across the Liangshan
Mountains (LSM) located between the Tibetan Plateau and
Sichuan Basin (1028350–1038460E, 288140–298330N).
Altitude in the area ranged from 325 m to 4,287 m above
sea level (Fig. 1). Here, giant pandas were found in seven
counties, but mainly in Mabian, Meigu, and Ebian. The
landscape was characterized by mountain slopes of conifer
and deciduous woodland, and occasional open areas of

grassland and shrubbery. Valley floors throughout the region
were intensively cultivated or urbanized and human activities
occurred in 113 small towns and 249 villages. A diversity of
bamboos lived in the LSM. Although pandas foraged on 17
species of bamboo, they showed a preference for Yushania
brevipaniculata, Y. ailuropodina, Qiongzhuea macrophylla, and
Y. tineloata. Pandas mainly fed on the leaves of Qiongzhuea
spp. during winter, whereas in spring, they foraged on both
Qiongzhuea and Yushania spp. shoots. The pandas fed on the
stem of these two bamboos in summer and on shoots and
new leaves of Chimonobambus spp. in the fall.

METHODS

Surveying Giant Pandas
The presence of giant pandas was determined by indirect
evidence (including feces, hair, tracks, and den sites) along
transect lines during field surveys. Giant panda feces are
easily distinguished from that of other sympatric species
such as the red panda (Ailurus fulgens). Fresh feces
(<15 days) have a white mucosal outer-layer, strong bamboo
odor, and are green in color. Old fecal samples are identifi-
able because of sun bleaching, a pale brown or black outer-
layer and dry interior. During field surveys, we recorded a
Global Positioning System (GPS) point if indirect evidence
was found along the transect line. We did not use all pre-
sences in the analysis, as their clumped distribution would
have led to problems of autocorrelation. We defined the
minimum distance between 2 sampling points prior to sam-
pling, according to an exploratory spatial autocorrelation
study (Guisan and Zimmermann 2000). To avoid recording
the same individual more than once, we randomly chose 1
from these sample points using the Random Point Generator
v.1.3 in ArcView GIS 3.3 (Environmental Systems Research
Institute, Inc., Redlands, CA). This randomly selected point
then served as the center of a circle with a radius of 300 m,
which corresponded to a core area of giant panda (Schaller
et al. 1985); we excluded other points within this radius from
analysis. A previous study indicated that an area with a
greater density of sign points is thought to be an area
with higher habitat quality (Liu et al. 2005).
We surveyed 204 transect lines and 950 km, covering

90.5% of giant panda habitat across the study area. The
average (�SD) length of transects was 4.64 km (�2.24).
We recorded GPS coordinates at the start and end points
of each transect and at points every 300 m along the transect.
The transect lines were tracked by GPS as we walked along
them and then we computed transect length using ArcView
GIS 3.3. We surveyed transects over 3 sampling periods: 11
transects in September 2005, 167 transects in March–
September 2006, and 26 transects in April 2007.

Habitat Mapping
We chose habitat variables related to terrain and land cover,
and those variables that indicate habitat suitability for giant
pandas (Xu et al. 2006). Furthermore, since human activities
may cause habitat degradation, we also considered factors
related to human activities for modeling habitat suitability
(Liu et al. 1999). We derived 18 topographic variables from a

Qi et al. � Multi-Scales of Giant Panda Habitat Selection 1093



digital elevation model (DEM) provided by the Computer
Network Information Center, Chinese Academy of Sciences
(http://datamirror.csdb.cn, accessed 28 Aug 2007).
To map vegetation we used Landsat 5 scenes acquired in

April 2002 andMay 2006 by the Global Land Cover Facility
(University of Maryland, College Park, MD). We divided
giant panda habitat (e.g., conifer forest) into small patches
because logging and land clearing were once widely practiced
in the region. For example, forest cover across the LSM
decreased from 11,600 km2 in the 1950s to 2,490 km2 in the
1980s (Hu 2001). We classified areas affected by these
historical practices as either clear-cut sparse forest or frag-
mented forest. Clear-cut sparse forests were characterized by
areas where almost all trees were logged and where small
trees have been retained and bamboo forest is dense.

Fragmented forests are un-logged patches next to clear-
cut sparse forests.
Using the maximum likelihood classification algorithm in

supervised classification, 7 vegetation classes and 2 classes of
nonvegetation cover were created by ERDAS 8.7 software
(Leica Geosystems Trade Co., Ltd., Beijing, China).
Overall, 63.0% of the study area was covered by woodland
(8.8% conifer forest; 25.4% mixed coniferous and deciduous
broadleaf forest; 12.4% fragmented forest; and 16.4% clear-
cut sparse forest). In conifer forest, 4 conifer species
(Abies georgei, A. forrestii, A. fabri, and Picea likiangensis)
were the most common. The mixed forest was comprised
of 3 main conifers (Tsuga dumosa, T. chinensis, and
P. brachytyla) and 4 common broad-leafed trees (Castanopsis
delavayi, Cyclobalanopsis glaucoides, Lithocarpus variolosus, and

Figure 1. Giant panda study area within the Liangshan Mountains, Sichuan province, China, 2005–2007.
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L. cleistocarpus). Shrub lands were dominated byRhododendron
kuanii, Corylus yunnanensis, Rubus ichangensis, and Lindera
limprichtii, and covered 16.7% of the total area. Meadows
were characterized by cover from Clinelymus nutans, Roegneria
nutans, and Festuca ovina and accounted for 11.2% the total
area. Remaining areas were characterized as agricultural land
(8.7%), open areas and rocky outcrops (0.4%), and rivers
(0.009%).

Scale Hierarchy
We defined available resource units across our 4 spatial scales
using the following methods. For the core area scale, we
extended a 28.26-ha circular plot with a buffer radius of
300 m around each presence point, as 300 m corresponds to
the radius of average core area for giant pandas (Hu et al.
1985). We calculated the daily movement scale using an
87.57-ha circular plot around each presence point corre-
sponding to an area with a radius of 500 m (Schaller
et al. 1985). For the home range scale, we computed the
frequency of occurrence of the habitat characteristic within a
circular area of radius 1,200 m representing the average
home range of giant pandas (Schaller et al. 1985). For the
seasonal elevational migration scale, we mapped the occur-
rence of environmental features within a 3,600-m circular
area, as this distance represents the average distance between
winter habitat and summer habitat (Pan et al. 2001).

Spatial Analysis
We used ENFA implemented in the ecogeographical pack-
age Biomapper 4.0 (Hirzel et al. 2002) to calculate niche
marginality and specialization using presence-only data to
account for differences in ecological importance between
variables. Prior to running the ENFA, we normalized the
ecogeographical variable maps using a Box-Cox transforma-
tion. We transformed the maps into raster layers using the
Av2Idris extension in ArcView GIS 3.3. The raster maps
describing habitat variables were quantitative, and 2 types
were included: frequency and distance. We calculated fre-
quency variables with the module CircAn of Biomapper
(Hirzel et al. 2002) and distance variables with the module
Distance of IDRISI 32 (Clark Labs, Worcester, MA). We
measured frequency variables as the number of a certain
ecogeographical properties (e.g., north facing slopes) within
1,200 m of the focal point. Variables with larger coefficients
indicated more preference in the study area and those with
coefficients of 0 (or near to 0) indicated a very weak effect of
the variable. We calculated distance variables as the distance
from the nearest given ecogeographic property (e.g., nearest
north facing slope) to the focal point. Larger values for this
variable indicated more avoidance by pandas in the study
area.
We prepared 46 ecogeographical variables using the raster

version of ENFA, but we did not use all of variables in the
final ENFA models. When 2 variables had a correlation
coefficient >0.5, we retained only the most proximal
(Engler et al. 2004, Hirzel et al. 2007). To check for corre-
lations among our data set of 46 variables, we produced a
correlation tree in Biomapper, removed 1 variable from each
correlated pair, and launched ENFA again. We repeated this

step until all eigenvalues were <0.5. As a result, 21 variables
(Table 1) remained in the final ENFA model across the core
range, home range, daily movement, and seasonal elevational
migration scales.
Under the ENFA, 2 key parameters: marginality and spe-

cialization are measured (Hirzel et al. 2002, Engler et al.
2004). Marginality refers to the degree to which giant panda
selection (or preference) differs from the average of the
variables across the LSM range. Positive values mean
that we found the giant panda in locations with greater
marginality values, and negative values mean the reverse.
Specialization measures niche narrowness relative to global
variance (Hirzel et al. 2002) and greater absolute values
indicated that pandas were more restricted to a range of
the given variable. The �signs are meaningless and 0 indi-
cates a very low specialization.
To provide overall information about the giant panda’s

niche, 1 marginality factor and several specialization factors
are integrated into global marginality and global specializa-
tion coefficients (Hirzel et al. 2004). Global marginality
ranges from 0 to 1 and indicates how far giant panda selec-
tion is from average conditions across the LSM. A global
marginality value of �1 means that pandas occupy a partic-
ular habitat relative to the distribution of all habitats across
the study area. The global tolerance coefficient, defined as
the inverse of the specialization, ranges from 0 to 1, and
indicates niche breadth of giant pandas, with small values
indicating a specialist species and large values indicating a
tolerant species.
We calculated habitat suitability maps with the median

algorithm based on several factors obtained by the ENFA
(Hirzel et al. 2002). These factors resulted from a compari-
son of variables’ eigenvalues based on aMacArthur’s broken-
stick distribution, and the eigenvalues were a count of all
locations from the species distribution that were at least as far
apart from the median of the study area (Sattler et al. 2007).
We defined the number of factors to retain with the broken-
stick method (Jackson 1993). Habitat suitability varies from
0 to 100 and indicates how the environmental combination
of a single point suits the requirements of the focal species
(Hirzel et al. 2002).
Using the means of 10-fold cross-validation, we tested the

accuracy of our habitat suitability model (Fielding and Bell
1997). We computed 3 presence-only evaluation measures,
that is, the Absolute Validation Index (AVI), the Contrast
Validation Index (CVI; Sattler et al. 2007) and the continu-
ous Boyce’s Index (B; Hirzel et al. 2006). The AVI indicates
how well the model discriminates high-suitability from low-
suitability areas and ranges from 0 to 1, whereas the CVI
indicates how much the AVI differs from what would have
been obtained with a random model and varies from 0 to
AVI. The Boyce index provides an assessment of model
predictive power and varies from �1 to 1, with 0 indicating
a random model (Hirzel et al. 2006). For all these measures
(AVI, CVI, and B), larger mean values indicate a greater
consistency with evaluation datasets, and lower standard
deviations indicate more robust predictions. Using the pre-
dicted/expected (P/E) curve (Hirzel et al. 2006), we defined
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4 classes of habitat suitability: suitable and optimal habitat
shared habitat suitability values for which presence was more
frequent than expected by chance (P/E > 1), the boundary
being placed so as to maximize the P/E difference between
them (Hirzel et al. 2006); habitat suitability values for which
presences are less frequent than expected (0 < P/E < 1) was
defined from marginal habitat; habitat suitability values with
no presence points (PE ¼ 0) were defined from unsuitable
habitat (Sattler et al. 2007).
Concomitant to the ENFA analyses, we sampled values of

each habitat variable at each giant panda location using
ArcView GIS 3.3. Then, we used the K–W test to compare
the means for each variable (Lu 2006) and to identify habitat
selection differences across the 4 scales. For all statistical
tests, significance was set at P < 0.05.

RESULTS

We recorded 400 signs of giant panda habitat use across the
study area. These included 30 hair sites, 2 tracks, 8 den sites,
and 360 fecal samples. Using the random point generator, we
reduced the number of actual signs of giant panda habitat
selection to 177 in the final model.

Ecological Niche Factor Analysis

The global marginality of the ENFA models was large for
each of the 4 spatial scales (Table 2), indicating that giant
panda habitat differs drastically from the mean conditions
across the LSM. For example, global marginality was 0.952
for the core area scale, 0.985 for the daily movement scale,
1.080 for the home range scale, and 1.146 at the elevational
migration scale. Although marginality increased with scale
hierarchy, global tolerance decreased (Table 2). These indi-
ces suggest that giant pandas are quite restrictive in the range
of conditions they tolerate, and these restrictions declined at
larger scales.

Table 1. Correlation between factors of Ecological Niche Factor Analysis and ecogeographical variables across 4 models for giant pandas in the Liangshan
Mountains, Sichuan province, China, 2005–2007.

Ecogeographic variable

Core range Daily movement Home range Elevational migration

Marginality
factora

(19%)b

Specialization
factorc

(20%)

Marginality
factor
(21%)

Specialization
factor
(21%)

Marginality
factor
(26%)

Specialization
factor
(23%)

Marginality
factor
(25%)

Specialization
factor
(23%)

Average height above sea level 0.51 0.13 0.50 0.13 0.45 0.20 0.43 0.01
Frequency of conifer forest 0.63 0.00 0.64 �0.02 0.68 �0.07 0.65 �0.11
Distance to first class roads
(connecting counties)

�0.08 �0.17 �0.08 �0.15 �0.07 �0.15 �0.07 �0.14

Distance to second class roads
(connecting counties and towns)

0.00 0.39 0.00 0.30 0.00 0.24 0.00 0.45

Distance to third class roads
(connecting towns and villages,
and abandoned logging roads)

�0.27 0.44 �0.26 0.41 �0.24 0.35 �0.22 0.20

Distance to fragmented forests �0.12 0.06 �0.12 0.05 �0.11 0.01 �0.10 0.01
Distance to meadows �0.15 �0.74 �0.14 �0.78 �0.13 �0.74 �0.12 �0.64
Distance to north-facing
slope (315–458)

�0.05 0.03 �0.05 0.03 �0.04 0.04 �0.04 0.04

Distance to slope (0–108) �0.18 0.02 �0.17 0.03 �0.16 0.04 �0.15 �0.04
Distance to slope (20–308) �0.11 0.03 �0.11 0.07 �0.10 0.10 �0.09 0.03
Distance to slope (60–908) 0.13 �0.01 0.13 �0.01 0.12 �0.01 0.11 �0.01
Distance to south-facing
slope (135–2258)

�0.07 �0.04 �0.07 �0.05 �0.06 �0.03 �0.06 �0.01

Distance to villages 0.29 �0.19 0.28 �0.19 0.26 �0.21 0.24 �0.11
Frequency of east-facing
slope (45–1358)

0.11 0.03 0.14 0.07 0.13 0.13 0.25 0.11

Sine of slope 0.05 �0.05 0.05 �0.06 0.04 �0.05 0.04 �0.05
Frequency of fragmented forest �0.03 �0.07 �0.04 �0.14 �0.08 �0.33 �0.11 �0.49
Frequency of mixed coniferous
and deciduous broadleaf forest

0.16 0.06 0.18 0.04 0.18 �0.01 0.23 �0.02

Cosine of slope �0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01
Frequency of sparse forest 0.06 �0.01 0.08 �0.05 0.13 �0.13 0.07 �0.21
Frequency of slope (10–208) 0.03 �0.02 0.03 �0.03 0.03 �0.02 0.06 0.00
Frequency of slope (20–308) 0.16 �0.07 0.19 �0.08 0.21 �0.10 0.27 �0.02

a Positive values of marginality mean that giant pandas prefer locations with greater values than the mean of the corresponding variable in Liangshan
Mountains, whereas negative values indicate that giant pandas avoid areas with less values than the mean of the corresponding variable in the study area.

b The amount of marginality or specialization accounted by each factor is given in parentheses.
c Signs of coefficient have no meaning for the specialization factor.

Table 2. Ecological Niche Factor Analysis parameters of marginality,
specialization, and tolerance for giant pandas in the Liangshan Mountains,
Sichuan province, China, 2005–2007, across 4 models.

Model
parameters

Model scales

Core
range

Daily
movement

Home
range

Elevational
migration

Marginality 0.952 0.985 1.080 1.146
Specialization 1.954 2.004 2.177 2.351
Tolerance (1/S) 0.512 0.499 0.459 0.425
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A range of habitat characteristics was associated with giant
panda habitat selection regardless of the measurement scale
and thus we could discern little effect of the spatial hierarchy.
Among a subset of the ecogeographical variables, elevation
had the second largest marginality (Table 1). Giant pandas
preferred habitat at higher elevations across all 4 models.
However, scores for the first specialization factor indicated
giant pandas are most restricted by the elevation of habitat at
the home range scale and weakly at the scale of elevational
migration (Table 1). Giant pandas were associated with
habitat containing large amounts of conifer forest, mixed
forest, and sparse forest, and few fragmented patches of forest
across all spatial scales. We found giant pandas to be mixed
forest specialists at all scales, but detected the strongest
association in the core range model. We also found that
giant pandas preferred sparse forest and avoided fragmented
forest, and preferred areas containing first and third class
roads far away from villages at all 4 scales (Table 1).
Using the K-W test, the frequency of fragmented forest,

sparse forest, 10–208 slopes, and distance to fragmented
forest, north-facing slopes, south-facing slopes, and 0–108
and 20–308 slopes differed significantly among the plot types
at the 4 scales (P < 0.05). Giant pandas preferred habitat
with a high frequency of 10–208 slopes, especially at the core
range scale. Giant pandas preferred 0–108 and 20–308 slopes
in all 4 models, but again, the effects were the weakest at the
largest spatial scale of elevational migration (Table 1). The
relationship between 2 measures of disturbed forest (fre-
quencies of sparse forest and fragmented forest) and the
distribution of giant pandas also varied across scales.
However, the relative strength of marginality and speciali-
zation for the fragmented forest increased with spatial hier-
archy; sparse forest use was consistent at the 3 small spatial
scales and although still associated with giant pandas at the
elevational migration scale, the association was weaker.

Predictive Accuracy of Multi-Scale Models
The predictive success of the ENFA model was high
(Table 3). Although the overall explanatory power andmodel
fit declined with spatial scale as indicated by a decreasing
Boyce index from the core range to the elevational migration
models, all values were near the theoretical maximum of 1
attesting to very good predictive power. The home range
scale model also had good predictive power (0.815 � 0.368),

but the large standard deviation is a symptom of low robust-
ness (Table 3). Although the AVI value for the elevational
migrationmodel was slightly less than those for models at the
3 small spatial scales (Table 3), all models received values
approaching 0.5, indicating that the fractions of correctly
classified presence points and evaluation partition were com-
parable. We can conclude that the 4 models show good
discrimination power between high-suitability and low-
suitability habitat areas in the LSM. A calculation of
CVI showed that the model at the migration scale
(CVI ¼ 0.441 � 0.248) was the best model, but wide stan-
dard deviation in the migration model (SD ¼ 0.248) indi-
cated low robustness for the prediction. The standard
deviation around the CVI estimate was narrow for the
core range scale (SD ¼ 0.161), meaning high robustness
for this prediction model. Although different across the 4
scales, the CVI values indicated appropriate habitat predic-
tion mapping, indicating that the modeling of the 21 selected
variables was able to distinguish habitat preferred by giant
pandas from other habitat across the LSM.

DISCUSSION

Our findings showed that the spatial scale over which habitat
characteristics are measured will influence estimates of habi-
tat selection and suitability. For species of concern such as the
giant panda, these differences may have a profound impact
on the type and extent of management. Using a spatial model
based on a scale representing the broadest form of landscape
use in this species (seasonal elevational migration), we found
that giant pandas are associated with slopes of <308 and
avoid fragmented forest. At the small scales of core range and
daily movement, we found that the most influential ecogeo-
graphic variables are the proximity to south-facing and
north-facing slopes. Habitat features selected might offer
one of the clearest illustrations of scaling effects (Schaefer
and Messier 1995) and should permit animals to avoid the
effects of factors likely to limit individual fitness. Selection
patterns should be the strongest at the largest scale of selec-
tion (Rettie and Messier 2000) whereas less influential lim-
iting factors may influence selection patterns only at small
scales (Mcloughlin et al. 2002).
Habitat selection is often viewed as a hierarchical process

that implies selection or avoidance of habitat types at various

Table 3. Mean evaluation indices and standard deviations for giant panda habitat suitability models across 4 spatial scales in the LiangshanMountains, Sichuan
province, China, 2005–2007.

Spatial scale

Boyce Indexa Absolute Validation Indexb Contrast Validation Indexc

Meand SDe Mean SD Mean SD

Core range 0.930 0.092 0.502 0.167 0.402 0.161
Daily movement 0.900 0.105 0.495 0.195 0.392 0.187
Home range 0.815 0.368 0.507 0.218 0.420 0.209
Elevational migration 0.895 0.101 0.484 0.256 0.441 0.248

a Boyce index (B) provides an assessment of model predictive power and ranges from �1 to 1.
b Absolute Validation Index (AVI) indicates how well the model discriminates between high-suitability and low-suitability habitat areas and ranges from
0 to 1.

c Contrast Validation Index (CVI) indicates howmuch the AVI differs from what would have been obtained with a randommodel and ranges from 0 to AVI.
d Larger mean values indicate a greater consistency with evaluation data sets.
e The smaller the SD, the more robust the prediction.
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spatial scales (Dussault et al. 2005). In this study, although
we found that giant pandas avoid fragmented forest, differ-
ences across the 4 scales were apparent and appeared to be
driven by environmental factors directly related to movement
and forage availability, especially at the elevational migration
scale. Given the large body size of giant pandas, dense
bamboo in the fragmented forest may inhibit movement
(Wei et al. 2000). In addition, its bamboo-specialized diet
and limited capacity for long-distance movement may
restrict them to certain areas (Hu 2001).
The use of different spatial scales yielded different esti-

mates of the extent to which the slope was preferred by giant
pandas. Small-scale models based on core area and daily
movement revealed a stronger association with habitat slope
than other 2 larger scale models. Core area and daily move-
ment scales typically contained habitats of biologically critical
importance for giant pandas such as foraging areas (Hu
2001); thus, the nonrandom utilization of landscape ele-
ments at these 2 scales was due to the limited presence of
those habitats containing resources used by giant pandas.

The daily energy intake of giant pandas is only marginally
greater than daily energy expenditure (Schaller et al. 1985,
Wei et al. 1997) and a preference for gentle slopes may be a
strategy to minimize energy expenditure (Hu et al. 1985,
Reid and Hu 1991, Wei et al. 2000). In terms of habitat
selection based on aspect, we found different effects of south-
facing sunny and north-facing shaded habitat across all 4
models and little discrimination for east-facing habitat. This
is in agreement with the notion that south-facing habitats
that receive direct sunshine are preferred by giant pandas (Hu
2001).
To minimize anthropogenic disturbance, giant pandas usu-

ally avoid roads and prefer dense cover of coniferous vegeta-
tion (Zhang et al. 2011). Several empirical studies have
concluded that giant pandas do avoid roads within nature
reserves (Ouyang et al. 2001) and across entire mountain
ranges (Xu et al. 2006, Wang et al. 2009). Our results
found that panda’s habitat selection may occur close to first
and third class roads across the study area at all 4 scales,
suggesting that we should comprehensively understand the

Figure 2. Habitat suitability maps for giant pandas in the Liangshan Mountains, Sichuan province, China, 2005–2007 for (A) the study area computed using
ecological niche factor analysis based on a spatial scale akin to distances traveled during giant panda seasonal migration; the 3,600-m radius dark circular area
shows suitability mapping in detail resulting from the (B) core range, (C) daily movement, (D) home range, and (E) migration scale models. Dark green areas
denote optimal habitat, green denotes suitable habitat, blue denotes marginal habitat, and beige represents unsuitable habitat.
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effect of roads on the giant panda. Based on our habitat map,
a selection for such 2 types of roads may result from 2 reasons:
these roads passed through giant panda habitat where they
have to use them for movement or dispersal because of spatial
proximity; and/or the whole or parts of these roads are away
from human settlements, and these roads have no physical
barriers such as fences. For example, 1 first class road con-
necting Ebian and Meigu counties crossed the core panda
habitat, but we found that giant pandas still live on both sides
of this road during our field surveys. Compared to first class
roads, however, the second class roads with fewer vehicles
appeared to be not used by giant pandas, most likely because
this kind of road is far away from giant panda habitat.
Therefore, these findings indicate that the spatial distribu-
tion of roads may be an influential factor affecting habitat use
of giant pandas.
No studies have examined habitat use of giant panda using

multi-scale methods across the landscape, and therefore
decision makers may be making ill-informed decisions based
on a single scale. For example, Wang et al. (2009) found that
giant pandas prefer gentle slopes <208 within the scale of
home range. However, our results suggest the selection of the
slope varied at other scales. Our finding is the first compre-
hensive assessment across 4 scales with immediate conserva-
tion relevance to this endangered species.
Our results show consistencies in the influence of vegeta-

tion cover among our models, which may be explained by the
role of this variable in meeting the nutritional and reproduc-
tive needs of giant pandas. For example, we found natural
forests such as conifer forest and mixed forest at high ele-
vations had a stronger association at the 4 scale models
perhaps because of continuous canopy cover (Hu 2001)
and presence of dens (Zhang et al. 2007), both necessary
features for giant pandas, further strengthening support for
the selection of old forest (Zhang et al. 2011). Generally, the
giant panda is known to be extremely particular in selecting
dens and dens are most likely found in large trees over 200
years old living in old-growth conifer forest. Although the
number of giant pandas has reportedly increased since the
population census in the 1980s, the degree of habitat frag-
mentation and degradation is now the critical issue for
conservation managers (Yan 2005).

MANAGEMENT IMPLICATIONS

The multi-scale approach of identifying spatial habitat suit-
ability can increase the knowledge of habitat management for
a species (Piorecky and Prescott 2006). Our findings reveal
the preference of giant pandas for the conifer forest at higher
than average elevations at all 4 scales, and highlight scale
dependence in habitat selection and habitat suitability dis-
tributions of giant pandas (Fig. 2). Thus, we recommend that
management efforts for forested areas be concentrated within
distribution areas of giant pandas, particularly for the conifer
forests. Especially, because the giant panda is a flagship
species for conservation in forest habitat, understanding
multi-scale habitat use will have implications for the conser-
vation of other forest-dwelling animals in China.
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