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New genes in human genomes have been found relevant in

evolution and biology of humans. It was conservatively

estimated that the human genome encodes more than

300 human-specific genes and 1000 primate-specific genes.

These new arrivals appear to be implicated in brain function

and male reproduction. Surprisingly, increasing evidence

indicates that they may also bring negative pleiotropic effects,

while assuming various possible biological functions as

sources of phenotypic novelties, suggesting a non-progressive

route for functional evolution. Similar to these fixed new genes,

polymorphic new genes were found to contribute to functional

evolution within species, for example, with respect to digestion

or disease resistance, revealing that new genes can acquire

new or diverged functions in its initial stage as prototypic

genes. These progresses have provided new opportunities to

explore the genetic basis of human biology and human

evolutionary history in a new dimension.

Addresses
1 Key Laboratory of Zoological Systematics and Evolution & State Key

Laboratory of Integrated Management of Pest Insects and Rodents,

Institute of Zoology, Chinese Academy of Sciences, Beijing, China
2 Department of Ecology and Evolution, The University of Chicago,

Chicago, USA

Corresponding authors: Zhang, Yong E (zhangyong@ioz.ac.cn) and

Long, Manyuan (mlong@uchicago.edu)

Current Opinion in Genetics & Development 2014, 29:90–96

This review comes from a themed issue on Genetics of human

evolution

Edited by Aida Andes and Katja Nowick

For a complete overview see the Issue and the Editorial

Available online 16th September 2014

http://dx.doi.org/10.1016/j.gde.2014.08.013

0959-437X/# 2014 Elsevier Ltd. All right reserved.

Introduction
Evolutionarily new genes, referred to genes emerged in

recent evolution [1], have attracted a broad interest, since

the first mechanistic model was proposed in the 1930s [2].

Thanks to extensive studies of molecular evolution and

genomic biology in the last decade, a dozen of distinct

molecular mechanisms to generate new genes were

found, including the most frequently investigated

DNA-based or RNA-based duplication mechanisms

and a recent additional hot topic of de novo origination

[1,3]. These mechanisms lead to pervasive new gene
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origination, which in turn participated in lineage-specific

or species-specific phenotypic evolution [4]. For human

biology, tremendous efforts have been dedicated to study

human-specific genes absent in other primates or poly-

morphic genes within human species, which leads to a

significant progress in understanding how often these new

genes contributed to phenotypic evolution and how they

are implicated in disease [5,6�,7].

To discuss the progress in technical and conceptual

investigation of new human genes, we provide here a

concise and updated overview. We first focus on the rate

and describe a few efforts in identifying primate-specific

or even human-specific new genes encoded by the human

genome. We describe the emerging themes in the func-

tionality of these recently evolved genes and highlight

their significance for brain and testis evolution. Then,

we discuss a new hypothesis regarding the phenotypic

evolution by new genes in the light of recent functional

data indicating that new genes can promote tumorigen-

esis, while evolving advantageous functions. We further

discuss the initial stage of new gene evolution when a new

gene is polymorphic in a species population and discuss

how these genes contribute to phenotypic difference

between individuals or populations. We end the review

with a summary of potentially important directions.

The human genome gains a high flux of new
genes
The pioneering effort via cDNA array-based comparative

genomic hybridization (aCGH) identified 134 genes show-

ing copy number expansion after the split of human and

great apes [8]. Further genomic analysis including three

additional mammalian species identified 689 human-

specific genes, that is, the ones not shared by chimpanzees,

and 870 hominoid genes shared by human and chimpanzee

but absent in mouse and dog [9]. A third analysis of

18 vertebrate genomes detected 389 human-specific

genes and 1828 primate-specific genes [10]. Besides

different identification strategies, the changing number

could also result from ever-changing annotation. For new

genes, this issue became more serious due to their poor

conservation and narrow expression [11��]. For example,

out of 1828 primate-specific genes, more than half were

revised by later Ensembl updates as pseudogenes or

noncoding transcripts, or unduly removed from the

annotation [11��]. In other words, the annotation database

is getting more conservative when including entries of

new gene. Such an issue should be cautioned when

studying new gene evolution.
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The difficulty that the unstable and insufficient annota-

tion brought to the study of new gene evolution was

demonstrated by the contrasting number of human-

specific de novo genes across different studies. Compara-

tive analyses across multiple primate genomes in

Ensembl v47 revealed three human-specific de novo genes

supported by both transcription and proteomics data [12].

Pooling of multiple Ensembl versions (v40–v56) led to an

exciting discovery of 60 human-specific de novo genes

[13]. A third analysis based on Ensembl v51 pooled out

11 human-specific de novo genes [14]. All these efforts are

similar technically: (1) to call proteins with the corre-

sponding orthologous region in outgroups incapable of

coding the open reading frame in the genomes of recent

human ancestors; (2) to ensure that candidate de novo
genes are supported by peptide databases. However, as

pointed out in [15], the difficulty roots in the lability of

human annotation of new genes and the arbitrariness of

bioinformatic parameters. Nevertheless, combining

complementary efforts on both duplicated new genes

and de novo new genes, it seems prudent to conclude

that substantial changes occurred in the human gene

reservoir with about 300 human-specific genes and

1000 primate-specific genes added.

Primate-specific or human-specific new
genes are often implicated in brain
development and male reproduction
Whether or not a new gene contributes a crucial pheno-

typic effect in evolution is an interesting problem. As

one of the early reported primate-specific gene families,

morpheus was found to encode nuclear pore complex

interacting protein (NPIP) with wide transcription in

numerous tissues and organs [16] and its specific function

has been known more for its activity involved in the HIV

replication [17]. Recently, numerous cases of new genes
Table 1

Examples of new genes evolved after the split of primate from other m

the other primates including chimpanzee. Homininae-specific genes re

specific genes refer to those evolved recently in the lineages of apes 

genes refer to those absent in non-primate mammals.

Gene Origination mechanism 

Brain-related new genes

GLUD2 RNA-based duplication (retroposition) Homi

DUF1220 family DNA-based duplication Prima

SRGAP2C DNA-based duplication Huma

Testis related

SPANXA/D DNA-based duplication Homi

Cancer related

CT45A1 DNA-based duplication Prima

TBC1D3 DNA-based duplication Homi

NCYM De novo Homi

PBOV1 De novo Huma

Other

Morpheus family DNA-based duplication Prima
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were reported related to various molecular functions or

phenotypic effects (more examples can be seen in

Table 1). Quite a few cases appear to be related with

brain functions such as the glutamate dehydrogenase 2

(GLUD2) [18,19] or the neuroblastoma breakpoint

(DUF1220) family [20,21]. A recently well characterized

case in support of the significance of new gene emergence

for human brain evolution is Slit-Robo Rho GTPase-

activating protein 2c or SRGAP2C, which is a DNA-level

duplicate originated around 2 million years ago [22��]. As

a partial copy, SRGAP2C inhibits the function of its

parental gene SRGAP2A and induces neoteny during

dendric spine maturation [23].

The enriched recruitment of new genes into brain expres-

sion is not only detected by these case studies, but also

strongly supported by genome-wide studies. Compara-

tive transcriptome profiling across major organs revealed

that the proportion of brain transcriptome contributed by

primate-specific genes in human is significantly higher

than that contributed by rodent-specific genes in mouse

[31].

Analogously, transcriptome profiling of hominoid-specific

and human-specific de novo genes also showed that these

genes tend to be transcribed in brain and testis [13,14].

Primate-specific genes transcribed in brain is enriched for

zinc finger (ZNF) genes [31], which appear to be mainly

contributed by the Kruppel-type or KRAB family [32].

Interestingly, about 40% of primate-specific KRAB-ZNF

genes are differentially transcribed between human and

chimpanzee prefrontal cortex, which may lead to exten-

sive gene expression difference between the two species

[33]. Why brain acts like an evolutionary hotbed in

recruiting new genes likely roots in the complexity of

its molecular network. Before the genomic era, it was
ammals. Human-specific new genes refer to those genes absent in

fer to those shared by human, chimpanzee and gorilla. Hominoid-

but absent in rhesus monkey and other primates. Primate-specific

Age Function Citation

noid-specific Glutamate metabolism in brain [18,19]

te-specific Transcribed in brain [20,21]

n-specific Dendric spine maturation [22��,23]

ninae-specific Spermatid morphogenesis [24]

te-specific Upregulate oncogenic and

metastatic genes

[25]

noid-specific Modulator of epidermal growth

factor receptor signaling pathway

[26,27]

ninae-specific Stabilize the oncogene MYCN [28��,29]

n-specific Possibly repress tumorigenesis [30]

te-specific Broadly transcribed [16,17]
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Figure 1
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Distribution of new genes with CT expression with respect to their

evolutionary ages. For the X chromosome, the proportion is defined as

the number of CT-X genes divided by the number of all X-linked genes in

the same age group. It was analogously defined for autosomes. The age

class was computationally generated on Ensembl v69 by using the

pipelines developed in [10] with the time information in TimeTree [44],

while the CT gene list was downloaded from CTpedia database in July

2014 [40]. We fitted the observed frequencies of CT-Xs in various stages

of human genome evolution to an exponential decay formula ( f(t) � ert).

We mark the species split time with a blue triangle when the mammalian

X chromosome was originated, that is, before the split of human and

opossum [10,45].
already known that the amount of RNAs transcribed in

brain was two- or three-fold higher than that in tissues

such as liver or kidney [34]. The updated transcriptome

data via RNA-sequencing confirmed that there were more

genes with highest expression in brain compared to liver

and kidney [35]. Thus, the complex nature of the brain

provides more interaction partners for a preexisting old

gene of interest that might compromise its evolvability

[36]. By contrast, a new gene has much less pleotropic

constraint and it can be integrated into this network under

positive natural selection [37].

However, it is important to note that the transcription of

new genes is often not limited to brain. Actually, the out-

of-testis hypothesis stated that new genes tend to gain

their functionality initially in testis possibly due to its

permissive transcriptional regulation and then extend

expression into other tissues [38,39�], which was sup-

ported by two separate genome-wide analyses showing

that primate-specific genes, especially X-linked ones, are

often predominantly or specifically transcribed in testis

[10,38]. A recent case study provided the valuable insight

into the biological role of testis-biased expressed new

genes. A better-characterized case is SPANXA/D family,

which consists of three X-linked sperm proteins associ-

ated with nucleus, SPANXA1, SPANXA2 and SPANXD

present only in human and great apes [24]. It was found

that during spermatid morphogenesis, the SPANXA/D

protein migrated into the base of the sperm head [24].

New genes appear to promote tumorigenesis
while evolving new advantageous functions,
which supports a mode of non-progressive
functional evolution
It was not expected that the newly evolved testis genes

could be implicated in tumorigenesis until the SPANX
actually as a Cancer/Testis (CT) antigen was found [40].

Despite the poorly characterized function, most CT

genes display a characteristic transcription pattern only

in testis and somatic cancer tissues possibly due to func-

tional similarity between gametogenesis and tumorigen-

esis [41]. Although CTs were known for decades,

recent evidence began to indicate that these proteins

can facilitate tumorigenesis [42]. For example, primate-

specific X-linked CT45A1 upregulated various oncogenic

and metastatic genes in breast tumor [25] (Table 1). For

some CTs, hypomethylation appears to be correlated

with their misexpression in tumors, but whether or not

copy number increase occurs is barely known [25].

Like SPANX or CT45A1, CT genes overall tend to arise

during or after the origin of placental mammals as found

in recent comparative genomic studies [43]. Furthermore,

there is a significant correlation between the age of

X-linked CTs (or CT-Xs) and their proportion out of

corresponding age groups (Figure 1): the proportion

increases when CT-Xs become younger and about 50%
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of X-linked primate-specific genes are CTs. By contrast,

the proportion of autosomal CTs remains almost constant

across various periods. This pattern indicates that the

previously reported increase of X-linked testis-biased

genes in human [10] is largely contributed by CT-Xs.

More than that, the young ages of the CT genes show the

intriguing connection between new gene origination and

tumorigenesis. As a matter of fact, new genes could drive

tumorigenesis even they are not categorized as CTs as

shown in following cases. One of the earliest cases is the

hominoid-specific oncogene TBC1 domain family, mem-

ber 3 (TBC1D3), which modulated epidermal growth

factor receptor signaling pathway [26]. In breast cancer,

TBC1D3 was found in recurrent amplicons which were

associated with lower survival span [46]. This line of facts

suggests that TBC1D3 situates in a genomic region prone

to duplication. In other words, such a mutagenic nature

not only increases the duplicability of TBC1D3 in evolu-

tion, but creates more copies in tumor and supports

tumorigenesis. Compared to TBC1D3, NCYM emerged

de novo in the ancestor of human and chimpanzee as an

antisense transcript of the well characterized oncogene,
www.sciencedirect.com
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MYCN [28��]. Given such a topology, NCYM is always

co-amplified with MYCN in neuroblastomas [28��]. More

than that, the NYCM protein stabilized MYCN, by

repressing GSK3b, which promoted the degradation of

MYCN [28��]. Meanwhile, it was found that new genes

could also repress tumorigenesis. For instance, prostate

and breast cancer overexpressed gene 1 (PBOV1) evolved

as a human specific de novo gene, whose expression is

associated positively with the survival possibility of

patients [30].

Different from new genes categorized as CTs (e.g.

CT45A1), TBC1D3 is widely transcribed [27] and NCYM
is expressed in fetal development [29]. Supposedly, CT

type new genes emerged in the ancestral genomes of

humans to aid the male functions in testis while non-CT

type new genes play some other or general functionality.

However, CT45A1, TBC1D3 and NCYM act like onco-

genes while they may assume various biological functions

as their expression patterns suggested, which bear a

previously unexpected theoretical significance in under-

standing evolutionary process of new gene functions.

Specifically, while new genes evolved advantageous func-

tions as expected, they might also bring negative effects

for the survival of organisms, which may be viewed as a

pleiotropic consequence. This has been predicted by

recently proposed the selection, pleiotropy and compen-

sation hypothesis (SPC) for adaptive evolution [47��].
Based on the SPC hypothesis, widely observed adaptive

evolution of new genes (e.g. [1,48,49]) might be a

consequence of further evolution to ‘solve’ a new

negative problem(s) brought by the fixation of new genes

as compensatory changes. This is a derivation from the

SPC hypothesis to new gene evolution, different from the

notion of progressively adaptive improvement of new

gene function, awaiting further test in the future.

Evolutionarily underexplored polymorphic
new genes contribute to within-species
phenotypic variation
Almost all the above studies are performed to understand

how human differs from other primates or other mammals

under the conventional framework of comparative geno-

mics. The revolution of the 2nd generation sequencing

techniques rapidly promotes the field from between-

species level to within-species level. From this angle,

we now have the opportunity to understand the early

picture on new gene origination. For DNA-level or RNA-

level duplicates, they should initially arise as copy num-

ber variation (CNV). Since CNVs tend to be deleterious

[50], human CNVs have revealed the important pheno-

typic consequence in the context of disease [51]. Progress

has also been made in understanding the evolutionary

consequence of CNVs, as revealed in numerous case

studies that detect their adaptive functional evolution

[6�]. Among these cases, salivary amylase gene (AMY1)

and CC chemokine ligand 3-like 1 (CCL3L1) gene copy
www.sciencedirect.com 
number gains have been relatively better characterized,

which enables adaptation to a high-starch diet and is

linked with lower susceptibility to HIV infection, respect-

ively [52,53]. Genome-wide association studies further

revealed that low copy number of AMY1 predisposes the

carrier with high possibility of obesity [54�] suggesting

that a single polymorphic duplicated gene locus

may induce multifold phenotypic difference between

individuals.

Regardless of the prevalence of CNVs [55], their evol-

utionary consequence is less known, except for a handful

cases such as AMY1 or CCL3L1. The difficulty partially

roots in that the exact structure and sequence of CNVs

could not be readily inferred based on the short reads

(�100 bp) provided by the 2nd generation sequencing

[56] because a significant proportion of CNVs in human is

much bigger than 1 kb [57]. Clearly, such information is

helpful or even essential for studying the function of

these loci. Fortunately, technical advancement based

on the 3rd generation sequencing (e.g. PacBio) enables

the full assembly of complex duplicate [56]. As shown in

[58], a 100 kb region enriched with repeats was fully

assembled with high accuracy (>99.9%) based on

targeted sequencing on the PacBio platform.

Compared to polymorphic new genes generated through

duplication-based mechanisms, polymorphic de novo
genes just began to be appreciated for its scale in the

standing genetic variation. Limited evidence indicates

that there may be more pervasive de novo gene origination

than currently appreciated. As shown by a Drosophila
survey, 144 testis-expressed de novo genes emerged

recently, which were subject to adaptive selection as

shown by the valley of the nucleotide diversity [3]. By

contrast, the de novo genes in human genomes may be

even much more abundant, as implicated by a recent test

that detected 5737 polymorphic open reading frames [59].

Conclusion and the prospective
Tremendous efforts in recent years have revealed a high

rate of new gene origination in the human genome and

their significant roles in evolution toward versatile func-

tionality in human biology. The sequencing data accu-

mulated rapidly in astronomical scale have unveiled the

evolutionary processes in which new genes emerged and

evolved; previous studies also raised new and interesting

conceptual and technical problems to solve. These

progresses have provided an unprecedented opportunity

to explore the genetic basis of human biology and human

evolutionary history. The literatures we reviewed above

can be taken as starting points to further detect under-

lying mechanistic processes and evolutionary forces.

Deciphering the new genes-related gene–gene inter-

action networks would help understand how a new gene

gets integrated into an ancestral gene network and exam-

ining the effects of new genes on the human phenotypes
Current Opinion in Genetics & Development 2014, 29:90–96
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would help reconstruct the phenotypic evolution that our

ancestors might have experienced.

The role of new genes in functional evolution will continue

to be an enthusiastic topic for research. It should be noted

here that the new gene studies have been almost all focused

on protein-coding genes with a few exceptions (e.g. [60]).

However, non-coding genes may represent an underex-

plored but potentially valuable field, especially considering

their rapid turnover rates [61�]. Actually, primate-specific

miRNAs may account for 19% of the whole annotated

miRNA pool in human, which is much higher than the

proportion (9%) of protein-coding genes [10]. More strik-

ingly, a transcriptome survey identified 14,682 long non-

coding RNAs in human with 70% (10,359) of them being

primate-specific [35]. These short or long noncoding genes

present an exciting challenge to understanding their roles in

evolution of the human genome.

Finally, the improvement in gene annotation can be

expected if the technical endeavor accounting for the

observed serious bias against young genes [11��] is made.

The integration of rapidly developing functional genomics

techniques such as ribosome-profiling or proteogenomics

and computational methods to detect evolutionary

constraint [62,63�] can increase reliability in detecting de
novo genes from genome sequences and in discerning

pseudogenes from functional genes.
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