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Abstract Antimicrobial defensins with the cysteine-
stabilized α-helical and β-sheet (CSαβ) motif are a large
family of ancient, evolutionarily related innate immunity
effectors of multicellular organisms. Although the wide-
spread distribution in plants, fungi, and invertebrates
suggests their uniqueness to Eukarya, it is unknown
whether these eukaryotic defensins originated before or
posterior to the emergence of eukaryotes. In this study, we
provide evidence in support of the existence of defensin-
like peptides (DLPs) in myxobacteria based on structural
bioinformatics analysis, which recognized two bacterial
peptides with a conserved cysteine-stabilized α-helical
motif, a nested structural unit of the CSαβmotif. Similarity
in sequence and structure to fungal DLPs together with
restricted distribution to the myxobacteria as well as central
role of the myxobacteria in the origin of eukaryotes suggest
that the bacterial DLPs represent the ancestor of the
eukaryotic defensins and could mediate immune defense
of early eukaryotes after gene transfer to the proto-
eukaryotic genome. Our work thus offers a basis for further
investigation of prokaryotic origin of eukaryotic immune
effector molecules.
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Introduction

The CSαβ-type defensins are a large family of pivotal
effector elements of innate immunity against microbial
infection in multicellular organisms (Dimarcq et al. 1998).
Their protective roles have been well documented by in
vivo targeted disruption of the mosquito Anopheles gam-
biae defensin gene causing the death of the mosquitoes
after Gram-positive bacterial infection (Blandin et al. 2002).
All members of it possess a conserved structural motif
comprising one α-helix and one β-sheet of two antiparallel
strands. The helix spanning the CXXXC sequence (X, any
amino acid) is connected to the second β-strand containing
the CXC sequence via two disulfide bridges. The third
disulfide bridge links the N terminus to the first β-strand
(Cornet et al. 1995). Although exon shuffling and conver-
gent evolution have proposed to explain the evolutionary
history of this diverse family of peptides (Froy and
Gurevitz 2003; Froy 2005), such structural conservation
together with functional relatedness provides convincing
evidence for their origin from a common ancestor (also see
Rodriguez and Possani 2005).

Since the first representatives were isolated from two
dipteran species (the flesh fly Sarcophaga peregrine and
the black blowfly Phormia terranovae), more than 70
different defensins have been identified from some phylo-
genetic distant invertebrates, such as insects, crustaceans,
ticks, spiders, scorpions, and mollusks (Bulet et al. 2004).
Subsequently, defensins with a similar folding to the
invertebrate defensins have also been found in most plants
(Lay and Anderson 2005). More recently, a defensin-like
peptide (named plectasin) has been characterized from a
saprophytic fungus, which shows a high degree of sequence
and structural similarity to the ancient invertebrate-type
defensins (Mygind et al. 2005). High effectiveness against
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the bacteria Streptococcus pneumoniae and Streptococcus
pyogenes makes it an attractive candidate for the develop-
ment of new type therapeutic drugs. After this discovery,
we took advantage of computational approaches identifying
additional 25 new fungal DLP genes, which form six
distinct defensin families (Zhu 2008). The widespread
distribution of the DLPs in most plants, fungi (Ascomycota
and Zygomycota), and various invertebrates suggests their
uniqueness to Eukarya. However, it is unknown whether
they originated before or posterior to the emergence of
eukaryotes. In this study, we identified two prokaryotic
peptides from myxobacteria that show detectable sequence
similarity to the eukaryotic DLPs from the fungus Rhizopus
oryzae, a species near the base of the kingdom fungi
phylogeny. Furthermore, comparative modeling-based
structural analysis confirms that these bacterial DLPs can
adopt a typical defensin fold. This provides key structural
evidence for elucidation of the origin of eukaryotic
defensins.

Materials and methods

Database search

BLASTP and TBLASTN programs were used to find
possible prokaryotic defensin-like peptides from the micro-
bial database under the default parameters (http://www.
ncbi.nlm.nih.gov) using amino acid sequences of represen-
tative defensin precursors from plants, fungi, and animals
as queries. TBLASTN compares a protein query sequence
against a nucleotide sequence database dynamically trans-
lated in all six reading frames (both strands) using the
BLAST algorithm (Altschul et al. 1990). This feature
makes TBLASTN especially suitable for the discovery of
remote homologues with a conserved sequence motif. The
strategy used here has succeeded in finding of 25 new
defensin-like peptides from model fungal genomes. De-
tailed methods used here have been described previously
(Zhu 2008).

Fold recognition and comparative modeling

Fold compatibility between the bacterial defensin-like
peptides AdDLP and SaDLP and known 3D structures
was performed through GenTHREADER (Bryson et al.
2005). The plectasin structure (pdb entry 1ZFU) was
selected as the template for modeling of AdDLP and its
mutant (AdDLP3SS) where two cysteines were added.
Standard comparative modeling approaches are used here
for structural analysis (Duret et al. 1998; Cohen-Gonsaud et
al. 2004). For constructing structural models of AdDLP and
AdDLP3SS, sequence alignment was undertaken using the

CLUSTAL X program and further refined by hand to
remove gaps within α-helical and β-strand regions. Once
the accurate alignment was determined, 3D models were
generated with programs TITO and MODELLER. Models
were evaluated by the Verify3D (http://bioserv.cbs.cnrs.fr/).
Structural superimposition and root mean square deviation
(RMSD) calculation were performed using Swiss-PdbViewer
program (http://swissmodel.expasy.org/spdbv). The 3D
protein models of AdDLP and AdDLP3SS have been
submitted to the Protein Model database (Castrignanò et al.
2006) under accession numbers of PM0074723 and
PM0074954, respectively.

Results

To trace the possible prokaryotic ancestor of the eu-
karyotic CSαβ defensins, we performed BLAST searches
of the microbial genome database using representatives
of the defensins from three eukaryotic kingdoms as
queries (Dimarcq et al. 1998; Bulet et al. 2004; Lay and
Anderson 2005; Mygind et al. 2005; Zhu 2008). These
searches detected only two myxobacterial sequences
from Anaeromyxobacter dehalogenans and Stigmatella
aurantiaca similar to DLPs (Rorsin-1 and Rorsin-2) from
the fungus R. oryzae (Zhu 2008; Fig. 1a). These two proteins
represent precursors identified by the existence of typical
signal sequences in their N termini and propeptide-like
sequences in their C termini with typical basic amino acid
cleavage signals (Fig. 1b). Previous studies have identified
several types of precursor organization of CSαβ-type
defensins differing in propeptide location. In this aspect,
the precursor organization of bacterial DLPs more resembles
the defensins from nematodes and mollusks (Zhang and
Kato 2003; Fig. 1b). The predicted mature peptides, referred
herein to as AdDLP (A. dehalogenans defensin-like peptide)
and SaDLP (S. aurantiaca defensin-like peptide), have a
compatible size to Rorsins. Thirty-one percentage sequence
identity and 56 sequence similarity can be found between
AdDLP and Rorsin-1. Among the 16 conserved residues,
eight belong to structural residues (four cysteines and four
glycines; Fig. 1a). Remarkably, except the lacking of two
cysteines involved in the formation of the third disulfide
bridge, AdDLP well matches the consensus motif of the
eukaryotic defensins with a typical cystine-stabilized α-helix
(CSH) sequence motif, a nested unit of the CSαβ motif
(Tamaoki et al. 1998), conserved in position with Rorsins.
To further confirm our observations, we scanned for the
antimicrobial peptide (AMP) database using BLAST
algorithm and E-value threshold of 1e−2, which again
identified two types of defensins respectively from
clusters 98 and 143 (Fjell et al. 2007) as the best match
to AdDLP. This is further strengthened by fold recognition
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using mGenTHREADER (Bryson et al. 2005), which
assigns many known CSαβ peptides including some
defensins as the best hits of AdDLP (Fig. S1a, as
supplementary information of Immunogenetics). These
features suggest that AdDLP could adopt a defensin-like
fold with putative antimicrobial activity.

To test this hypothesis, we predicted the tertiary
structure of AdDLP by comparative modeling (Fig. 2a).
Comparative modeling is a computation-based structural
biology approach that has successfully been used in the
discovery of new insulin-like proteins from C. elegans
(Duret et al. 1998) and scorpion neurotoxins from M.
martensii (Zhu and Gao 2006). The model of AdDLP do
favor the existence of the CSH structural motif comprising
one α-helix (residues PQCKAYC) linking to the C-
terminal β-strand (residues CVC) by two conserved
disulfide bridges. Another β-strand is composed of
residues GAI. In addition to conservation in the secondary
structure elements, the AdDLP structure is globally very
similar to that of plectasin with a RMSD of 0.78 Å for 37
Cα atoms (Fig. 2b). Two equivalent positions to the 4Cys
and 30Cys of plectasin that are involved in the formation
of the third disulfide bridge are occupied by 4Ser and
29Ile and are close each other in the structure of AdDLP.
When 4Ser and 29Ile of AdDLP are substituted for Cys
residues (named AdDLP3SS), a disulfide bridge with an

optimal distance between two Cα atoms (6.16 Å) can be
generated in a good structure model identified by
Verify3D scoring above 0.2 (0.258; Fig. S2, as supple-
mentary information of Immunogenetics). These observa-
tions provide a structural basis for emergence of the first
CSαβ defensin in eukaryotic life by establishing this
additional disulfide bridge on the bacterial DLP scaffold
carrying the CSH structural motif. Of particular further
analysis of the structure of AdDLP allowed us to identify
a putative antimicrobial architecture of amphipathicity in
which hydrophobic and hydrophilic structural clusters are
spatially separated (Brogden 2005; Fig. 2c). Such a unique
structural arrangement was also observed in the structure
of plectasin (data not shown).

Evolution of two cysteines from structurally adjacent
residue pair Ser and Ile to assemble a disulfide bridge has
been observed in several CSαβ peptides. For example, a
recent study performed by Zhu et al. identified a scorpion
Na-channel toxin ancestor with only three disulfide bridges
(Zhu and Gao 2006). At this ancestral scaffold, two point
mutations (Ser/Cys and Ile/Cys) built the fourth disulfide
bridge and finally led to the generation of diverse
pharmacological groups. Another example can also be
found in some members of the family III of fungal
defensins, which also used this mechanism to evolve
another disulfide bridge (Zhu 2008). Hence, it appears that

Fig. 1 Comparison of prokaryotic and eukaryotic defensins. a Sequence
alignment of representative defensins. Data resource: AdDLP
(YP_467026), SaDLP (ZP_01466688), Rorsin-1 and Rorsin-2 (Zhu
2008), Plectasin (Mygind et al. 2005), Myticin-A (Mitta et al. 1999),
Omdef-A (Nakajima et al. 2001), Rs-Afp1 (Terras et al. 1995), and SPI1
(Sharma and Lönneborg 1996). Sequences involved in the formation of

the CSH motif are boxed. s Small residue, h hydrophobic residue, p
polar residue. Cysteines are shadowed in yellow, and identical residues
between AdDLP and Rorsin-1 are underlined once. Residues in the
bacterial DLPs that might develop into cysteines when evolving to
eukaryotes are in red. b Precursor organization of representative
defensins. Residues at the processing sites are shown here
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the residue pair Ser and Ile could represent a hot spot for
the development of new disulfide bridge.

Although low sequence similarity existing between
SaDLP and eukaryotic DLPs, clear orthologous relation-
ship between SaDLP and AdDLP and sharing of a
conserved CSH sequence motif suggest that SaDLP might
also adopt a defensin-like fold, as revealed by fold
recognition (Fig. S1b, as supplementary information of
Immunogenetics).

Discussion

Bacteria constitute a major pathogen of early eukaryotic life
when it emerged from prokaryotes by the possible
endosymbiosis mechanism (López-García and Moreira
2006). However, how these early eukaryotic organisms
can resist prokaryotic microbial infection is largely un-
known at present. According to the Syntrophic Hypothesis
proposed by Moreira and López-García (1998), it is very
likely that an ancestral myxobacterium could contribute its

defense system to early eukaryotes by horizontal gene
transfer of its immune-related genes to the proto-eukaryotic
genome during eukaryogenesis. The identification of two
defensin-like peptides in the myxobacteria and the confir-
mation of their restricted distribution to myxobacteria have
important implications for elucidating prokaryotic origin of
innate immunity effectors of eukaryotic life. Evidences
supporting the hypothesis that the eukaryotic defensins
originated from one ancestral myxobacterial DLP come
from the following observations:

1. At the structural level: assembly of additional disulfide
bridges in an ancestral scaffold represents a common
strategy for proteins to evolve new structure and
function. Such a strategy has been proposed to: (1)
explain the relationship of the ancient disulfide-directed
β-hairpin fold and inhibitor cystine knot fold (Wang et
al. 2000), (2) elucidate the origin of scorpion sodium
channel neurotoxins (Zhu and Gao 2006) and type 2
cystatins (Müller-Esterl et al. 1985), and (3) represent a
coevolutionary mechanism to direct and shape the

Fig. 2 Structural similarity between bacterial DLP and eukaryotic
defensins. a Sequence alignment of AdDLP and plectasin for
structural modeling. Identical residues and conserved replacement
are shadowed in green. Disulfide pattern and secondary structure
region are calculated from their structural coordinates. Lacking of the

first disulfide bridge in AdDLP is indicated by dotted lines. Cylinders
represent α-helices, and arrows represent β-strands. b Superimposi-
tion of AdDLP and plectasin structures. c Structural evidence for
antimicrobial activity of AdDLP

952 Immunogenetics (2007) 59:949–954



diverse repertoire of AMPs to overcome microbial
resistance (Peschel and Sahl 2006). This is also
consistent with the prevailing view that disulfide
bridges have been added during evolution to enhance
the stability of proteins that functions in a fluctuating
cellular environment (Hogg 2003).

From a structural viewpoint, the CSαβ motif is
actually a minor elaboration of a simpler ancestral motif,
known as the CSH motif that consists of a pair of
cysteines located on the α-helix and separated by three
amino acids (CXXXC). This pair of cysteines is
connected via two disulfides to a second pair of
cysteines (CXC), itself folded in an extended β-strand-
type structure (Tamaoki et al. 1998). Peptides with the
minimum CSH motif might hold an ancestral role for the
evolution of the CSαβ motif. However, the CSH peptides
previously characterized such as the members of the ET/
SRTX family or the bee venom toxins only represent a
consequence of structural convergence other than evolu-
tionary relationship because of the inverse orientation in
the CSH motif (Tamaoki et al. 1998). On the contrary,
AdDLP and SaDLP may represent the real archetype of
the CSαβ-type defensins owing to identical orientation in
their CSH motif, which can easily serve as a platform to
assembly different types of defensins by evolving disul-
fides in different positions. Therefore, it appears that all
the CSαβ defensins have evolved from a single common
ancestor, being a molecule with a primordial CSH motif
and only two disulfides structurally resembling the
bacterial DLPs.
2. From the viewpoint of the origin of eukaryotes: as

predators of other microorganisms (Reichenbach 1999),
the myxobacteria have been considered as a bacterial
partner involved in the origin of eukaryotic life by
endosymbiosis of a methanogenic archaeon (Moreira
and López-García 1998; López-García and Moreira
2006). The latter formed early eukaryotic nuclear
genome (proto-eukaryotic genome) and obtained some
genes of the myxobacteria by horizontal gene transfer
in the subsequent evolution. Considering eukaryotic
defensins having a limited antibacterial spectrum and
being highly active against many Gram-positive bacte-
ria but generally not being able to inhibit the growth of
majority of Gram-negative bacteria (Dimarcq et al.
1998; Lay and Anderson 2005), it is reasonable to
assume that the Gram-negative myxobacteria are likely
resistant to their own DLPs, although the functional
data of these two bacterial DLPs is not available at
present. The existence of the DLP in the myxobacteria
may thus be helpful to defend some Gram-positive
microbial infection in their common habitat, as do some
antibiotics. If our inference is correct, it is possible that
the myxobacterial DLPs, as early transferred immune-

related genes, protected ancestral eukaryotes from
bacterial infection. To confirm this inference, it is
needed to characterize the bacterial targets of these two
DLPs. Given most of antibacterial peptides from
bacteria have narrow inhibitory spectra (Diep and Nes
2002), it could be a fascinating problem about how one
can identify a microbial target for such highly selective
antimicrobial molecules. At present, such investigation
is under progress. However, regardless of the antibac-
terial activity of these two peptides, their structural
feature provides evidence for a key role in the origin of
eukaryotic defensins.

It is also worth mentioning that 15 deltaproteobacterial
species whose genome sequences have been completed
(http://www.ncbi.nlm.nih.gov/) lack orthologs of AdDLP/
SaDLP. This seems to suggest that such peptides could be
the product of horizontal gene transfer from an unidenti-
fied eukaryotic genome. However, gene loss after speci-
ation probably is a more plausible explanation, which are
supported by the following facts: (1) the lack of AdDLP
gene in the genome of Anaeromyxobacter sp. Fw109-5, a
closely related sibling species of the A. dehalogenans,
clearly shows that gene loss event occurred during
evolution, (2) the existence of DLPs in two distant
bacterial genomes (A. dehalogenans and S. aurantiaca)
supports common ancestry, (3) Adding of disulfide
bridges in an ancient scaffold represents an evolutionary
advantage in stabilizing protein structure (Hogg 2003).
Removal of the third disulfide from a eukaryotic DLP
presumably transferred from the myxobacteria appears
unlikely.

Previously, Boman’s group has proposed that the insect
antibacterial peptides—cecropins have evolved from ribo-
somal protein L1 of an ancestral intracellular pathogenic
bacterium (Putsep et al. 1999a, b). Although differing in the
bacterial partnership, both cecropins and defensins, two most
famous insect antibacterial peptides, appear to originate
considerably early, which can be traced to prokaryotic life
time when these ancestral molecules could perform a similar
task to the present-day antimicrobial peptides.

In conclusion, successful identification of two bacterial
peptides with a conserved CSH motif gives us an
opportunity to elucidate the evolutionary history of the
eukaryotic defensins. With them in hand, now we can
design experiments to determine their structure and func-
tion as antibacterial factors in the immune response of the
myxobacteria from ecological and evolutionary perspective.
Furthermore, adding of the additional disulfide bridge
corresponding to that of the eukaryotic defensins on the
scaffold of AdDLP and SaDLP will help us to evolution-
arily mimic the origin process of the eukaryotic defensins in
laboratory.
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