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Abstract The Oriental tobacco budworm moth, Heli-

coverpa assulta (Guenée) (Lepidoptera: Noctuidae), is a

serious pest on tobacco in China. The flowering stage of the

host plant is one of the most attractive stages to H. assulta for

feeding and oviposition. Nine electrophysiologically active

compounds in tobacco headspace at flower stage were

detected by gas chromatography–electroantennographic

detection (GC–EAD). These compounds were subsequently

identified by gas chromatography-mass spectrometry

(GC–MS) as (E)-b-ocimene, octanal, (Z)-3-hexenyl acetate,

(Z)-3-hexen-1-ol, nonanal, (Z)-3-hexenyl-2-methyl butyrate,

decanal, linalool, and (E)-b-caryophyllene. The synthetic

blend containing nine of the above compounds attracted

mated H. assulta females from a distance by upwind oriented

flight. Selected subtraction assays showed that the 4-com-

ponent mixture of (E)-b-ocimene, (Z)-3-hexenyl acetate,

nonanal, and (E)-b-caryophyllene elicited equivalent levels

of attraction as the 9-component mixture. The removal of any

of the four compounds from the 4-component blend resulted

in a significant decrease in female upwind flight behavior.

Keywords Helicoverpa assulta � GC–EAD � GC–MS �
Tobacco �Wind tunnel � Olfactory receptor neuron � Single

sensillum recording

Introduction

The Oriental tobacco budworm moth, Helicoverpa assulta,

(Guenée) (Lepidoptera: Noctuidae), is distributed in three

continents, Asia, Africa, and Australia. (Boo et al. 1995).

Like the other oligophagous herbivores, H. assulta utilizes

a narrow range of host plants and mainly feeds on plant

species in Solanaceae such as tobacco, hot pepper, and

several Physalis species (Fitt 1989; Wang and Dong 2001).

The larvae of H. assulta preferentially feed upon the buds

and the reproductive organs of tobacco and other host

plants, leading to severe economic loss. Because of their

habit of feeding inside the reproductive organs, the larvae

are difficult to control with conventional insecticides, and it

is urgent to develop alternative control strategies (Boo

et al. 1995).

The sex pheromone of H. assulta has already been

identified by Sugie et al. (1991) and is highly attractive to

male H. assulta (Cork et al. 1992). However, control

strategies based on lures developed from female sex

pheromones have one important drawback, which is that

only male behavior is affected, and not the behavior of

gravid females. The pheromone-based approaches are not

efficient at high population densities or when the mated

females immigrate in the control areas. Methods that could

also manipulate the behavior of egg-laying females would

enhance the efficacy of pheromonal techniques.

Chemical stimuli from plants play an important role in

insect–plant interactions. Many phytophagous insects use

odors as cues for orientation to host, for mate-finding, their
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own nutrition, or oviposition (Schoonhoven et al. 2005).

Up to now, in the case of lepidopteran moths, attractant

plant volatiles mediating female long-range responses to

host plants have been identified, including Argyresthia

conjugella (Bengtsson et al. 2006), Cydia molesta (Natale

et al. 2004), Cydia pomonella L. (Hern and Dorn 1999,

2004; Light et al. 2001), Mamestra brassicae (Rojas 1999),

Paralobesia viteana (Cha et al. 2008a, b), Lobesia botrana

(Tasin et al. 2005, 2006a, b, 2007), Helicoverpa armigera

(Hartlieb and Rembold 1996; Jallow et al. 1999), Manduca

sexta (Fraser et al. 2003). More recently, in H. assulta and

other closely related heliothine moths, some selective

olfactory receptor neurons for particular volatile com-

pounds have been found by using gas chromatography

(GC) linked to single sensillum recording techniques

(Stranden et al. 2003a, b; Røstelien et al. 2005).

Despite the importance of role played by olfactory cues

in host-plant location by H. assulta, little is known about

long-range perceptible host-plant signals of this moth

species. Tobacco is the primary host plant of H. assulta,

and the flowering period of host plant is the most attractive

stage for ovipositing or feeding (Wu 1990). In the present

study, electrophysiologically active compounds from

headspace samples of tobacco flowers were identified by

gas chromatography–electroantennographic detection

(GC–EAD), and their behavioral activity with female H.

assulta was investigated in a wind-tunnel bioassay.

Methods and materials

Plants

Tobacco plants, Nicotiana tabacum L. (Solanaceae) var.

NC89, obtained from Institute of Tobacco, the China

Academy of Agricultural Sciences (CAAS), were kept in a

climatized greenhouse at 26 ± 2 �C, 60 ± 10 % R.H.

Potted plants that had fully expanded 4–5 true leaves were

transferred from the greenhouse to the outdoor in early

June in Beijing. Tobacco plants at full blossom were used

for collection of volatiles in the field.

Insects

Helicoverpa assulta were originally collected as larvae

from the tobacco field in Zhengzhou, Henan Province of

China, and maintained for over ten generations in controlled

conditions under a 16L: 8D photoperiod cycle at 26 ± 1 �C

and 55–65 % relative humidity. Larvae were fed on artifi-

cial diet described by Wu and Gong (1997). Pupae were

sexed and placed in cages separately. After emergence,

male and female adults mated in nylon cages. 3-day-old

mated females were used in wind-tunnel tests. To verify the

mating status, tested females were dissected and checked

for the presence of a spermatophore in the bursa copulatrix.

Moths were provided with a 10 % honey solution.

Chemicals

Plant odorants (Z)-3-hexen-1-ol (98 %) and (Z)-3-hexenyl

acetate (97 %) were purchased from Roth KG Company

(Karlsruhe, Germany). Octanal (98 %), nonanal (97 %),

decanal (97 %), racemic linalool (97 %), (E)-b-caryo-

phyllene (99 %), and (R)-(?)-limonene (96 %) were

obtained from Fluka Chemie Company (Buchs, Switzer-

land). (Z)-3-hexenyl-2-methyl butyrate (97 %) and (Z)-3-

hexenyl butyrate (98 %) were from Kosher (Houston,

USA). (E)-b-ocimene, obtained as a gift from Dr. J. J. A.

van Loon. (Wageningen University, the Netherlands), was

analyzed by gas chromatography and mass spectrometry

(GC–MS), and its purity was 60 %, and the other fraction

is mainly limonene (more than 30 %). Hexane was from

Beijing Chemical Company, Beijing, China.

Collection of volatiles

Headspace sampling was used to collect volatiles from

clusters at full bloom of intact tobacco. This method is

similar to that described by Wei et al. (2006), but with minor

modifications. Whole flowers were enclosed in a plastic oven

bag (50 cm 9 60 cm) that was sealed with self-sealing strips

around the stem. The compressed air was led through a water

bubbler (500 ml) for humidification and a freshly activated

charcoal filter for purification. The moisturized and filtered

air was pushed into the bag at a rate of 500 ml/min. Volatiles

were trapped in a glass tube (10 cm long, 6 mm in diameter)

containing at 80 mg of 80/100 mesh Super Q adsorbent

(Alltech Assoc., Deerfield, IL, USA) with polypropylene

wool in both ends. The glass tube was connected with Teflon

tubing to a small pump (Beijing Institute of Labor Instru-

ments, China). Each collection lasted for 8 h and replicated

for 5 times. Volatiles were desorbed by eluting the cartridge

with 200 ll redistilled hexane and stored at a freezer at

-20 �C for subsequent use.

Gas chromatography and electroantennographic

detection (GC–EAD)

The antenna of H. assulta was prepared as described by Zhao

et al. (2006) with some modifications. The antenna of the

3-6-day-old mated females was cut at the base of the fla-

gellum and the tip of terminal segment was removed. The

excised antenna was mounted between two microelectrodes

with some electrode gel. The electrodes were connected with

a micromanipulator (Syntech MP-15, Germany). The signals

from the antenna were amplified with a high impedance
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amplifier (IDAC-4, Syntech, Germany) and were sent to a

computer. Data storage and processing was conducted by the

Autospike software package (Syntech, Germany). Linked

GC–EAD analyses were conducted using an Agilent 7890A

GC equipped with a polar HP-INNOWAX column

(30 m 9 0.25 mm 9 0.25 lm). Nitrogen was used as car-

rier and makeup gas (30 ml/min). A 2 ll sample was intro-

duced into the GC column in a splitless mode using a split/

splitless injector at 220 �C with the Flame Ionization

Detector (FID) at 250 �C. The oven temperature was pro-

grammed as follows: 40 �C for 2 min; 5 �C/min to 230 �C

and hold for 5 min. The outlet of the GC column was split 1:2

ratio between FID of the GC and the moth antenna using a

Microfluids Splitter with Makeup Gas (Agilent, Technolo-

gies, Palo Alto, CA, USA). Effluent to the antenna was mixed

with a charcoal-filtered and humidified air stream that flowed

through an 8-mm-diameter glass tube at a constant rate of

250 ml/min. The mounted antenna was placed inside the

expanded end of the glass tube (8 cm from the EAD outlet on

the GC). An approximate proportion of the tobacco volatiles

injected on the GC was based on peak area.

Gas chromatography and mass spectrometry

Headspace collections were analyzed by using a gas chro-

matography–mass spectrometry system (Hewlett Packard

6890 N GC model coupled with 5973 MSD), equipped with

a polar HP-INNOWAX column (30 m 9 0.25 mm 9 0.25

um) and a nonpolar DB-5 column (30 m 9 0.25 mm 9

0.25 um). Helium was used as carrier gas with a constant flow

of 26 cm/s. Temperature programs followed those of the

GC–EAD system described above. Major volatiles and GC–

EAD-active volatiles in the collected extracts were identified

by comparing their mass spectra with NIST library spectra

(Agilent Technologies, Palo Alto, CA, USA) and confirmed

with authentic reference compounds (Yan and Wang 2005).

No attempt was made to determine the absolute configura-

tion of linalool, and the relevant synthetic compounds were

employed as racemates in behavioral and single sensillum

recording experiments.

Single sensillum recording (SSR)

The insect was placed inside a disposable Eppendorf pip-

ette tip with the narrow end cut to allow the head and the

antenna to pass through. The Eppendorf pipette tip was

inserted in a Plexiglas holder that was mounted on a plat-

form. The head and antenna were exposed and immobilized

by dental wax under a stereomicroscope. Electrophysio-

logical recordings from single receptor neurons were

recorded by the use of sharpened tungsten microelectrodes

according to Mustaparta et al. (1979). The reference elec-

trode was inserted into the compound eye. The recording

electrode was inserted into the base of a sensillum and

made sure it was in contact with a single receptor neuron.

First, we stimulated with the various volatiles under the

dose of 500 lg, and when the responding signal was suf-

ficiently strong for one compound, we stimulated with

different concentrations of the compound. All the tests

were performed by blowing air (10 ml/s) through a Pasteur

pipette (15 cm long) containing test compounds on filter

paper strip (0.5 cm 9 3.0 cm). Action potentials of the

receptor neurons were amplified through a USB-IDAC

interface amplifier (IDAC-4, Syntech, Germany). Suc-

cessful recordings were stored and analyzed by means of

Autospike version 3.4 software (Syntech, Germany). The

total successful recordings were from thirty-five receptor

neurons randomly selected in antennae of seventeen mated

females.

Wind-tunnel bioassay

Nine synthetic blends were used in wind-tunnel tests. The

composition of each blend is shown in Fig. 4. The com-

ponents were dissolved in redistilled hexane with the same

ratio as naturally emitted by tobacco volatiles (Table 2).

Behavior observations of the mated female H. assulta

were carried out in a Plexiglas wind tunnel, 2.4 m long,

0.9 m wide, 1 m high, similar to that described by Ming

et al. (2007). The conditions in the wind tunnel were

24–27 �C, 40–60 % relative humidity and 0.6 lux of red

light. The wind speed was 50 cm/s. Females were placed

individually into a mesh cage (10 cm long and 5 cm in

diameter) and allowed to acclimate the wind-tunnel con-

ditions for at least half an hour. The rubber septa loaded

with test samples or solvent was placed at the upwind end of

the tunnel, above 30 cm from the floor. At the end of the

photophase, test females were introduced into the down-

wind end of the wind tunnel one by one, 200 cm from the

odor sources. Three groups were run for each blend tested.

The number of females tested in each group ranged from 7

to 16 depending on availability of mated females. The

behavioral responses were recorded as upwind flight over at

least 60 cm and landing response on the odor source during

a 5-min bioassay period. The proportions of responding

females were subjected to X2 2 9 2 test with the threshold

of significance set at P \ 0.05 using software SPSS 10.0.

Results

GC–EAD analyses and identification of host-plant

volatiles

In GC analyses on a polar column with FID, 25 compounds

were identified in volatiles from tobacco flowers as shown
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in Table 1. Of these compounds, nine elicited consistent

responses in female H. assulta antenna above background

(Fig. 1). The EAD-active compounds were identified by

GC–MS analysis according to their mass spectra and

retention times, in comparison with synthetic or authentic

standards. The nine chemicals in tobacco headspace vola-

tiles that elicited antenna responses were (E)-b-ocimene,

octanal, (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, nonanal,

(Z)-3-hexenyl-2-methyl butyrate, decanal, linalool, and

(E)-b-caryophyllene. The electroantennogram (EAG)

activities of natural compounds eluting from the GC and

their relative abundances were not correlated (Fig. 1,

Table 2). Nonanal elicited the strongest response though its

quantity is much less than that of (E)-b-ocimene, which

also elicited a strong response (Fig. 1).

Single sensillum recording

Attempt was made to see whether there are olfactory

receptor neurons (ORNs) selectively responding to the

EAD-active compounds identified by GC–EAD. Of the

thirty-five ORNs from H. assulta females by SSR, 4 were

found to respond to linalool, 3 to (E)-b-caryophyllene, 2 to

nonanal and (Z)-3-hexeny1 acetate, and only one response

to each of octanal and (Z)-3-hexen-1-ol. No ORN was

found to respond to (E)-b-ocimene, (Z)-3-hexenyl-2-

methyl butyrate, or decanal (Fig. 2). The remaining ORNs

have no responses to the nine tested compounds. When

stimulated with the plant odorants, all the related ORNs

appeared to elicit an excitatory response and increased

firing rate at increasing stimulatory concentrations (Fig. 3).

No inhibition of responses by reduced firing rate or stop

firing was observed.

Wind-tunnel bioassay

Behavioral responses of H. assulta females to the mixtures

containing the main nine EAD-active compounds found in

tobacco flowers were conducted in the wind tunnel. The

proportion and amount of the ‘tobacco mimic’ are shown in

Table 2. A significantly greater number of females were

elicited upwind orientation flight when presented with the

9-component blend compared with a solvent control

(X2 = 6.75). The female moths clearly displayed upwind

flight toward the 9-component blend, but not toward the

solvent control (Fig. 4). However, there was no significant

difference between the number of landings elicited by the

9-component blend and the solvent control.

The compounds that may be essential for female

attraction were screened by a series of behavioral tests in

the wind tunnel. We first tested the 9-component blend,

which elicited 40.3 % of females to exhibit upwind flight

responses (Blend A in Fig. 4). Few females responded to a

blank stimulus. If one compound in the 9-component blend

was removed without reducing the attractiveness relative to

the full blend, this compound was omitted, if not, this

compound was deemed as a key component. Removal of

(Z)-3-hexen-1-ol, (Z)-3-hexenyl-2-methyl butyrate, oct-

anal, decanal, and linalool to produce blends B, D, F, and H

did not result in significantly lower flight responses from

females. However, behavioral measurements evoked by the

blends E, G, and I by the removal of (Z)-3-hexenyl acetate,

nonanal, (E)-b-ocimene were not significantly different

from those evoked by the 9-component blend. Although

omission of (E)-b-caryophyllene (Blend C) did not give a

significant reduction in upwind flight response of females,

Table 1 Volatile compounds identified in headspace collections

from tobacco flowers

Compounds Retention time (min)

Hydrocarbons

Undecane 6.27

Dodecane 8.59

Tridecane 11.14

Tetradecane 13.72

Pentadecane 16.23

Hexadecane 18.65

Heptadecane 20.95

Aldehydes

Hexanal 5.94

Heptanal 8.23

Octanala 10.84

Nonanala 13.52

Decanala 16.15

Alcohols

(Z)-3-hexen-1-ola 13.37

Ketones

6-methyl -2-heptanone 9.53

6-methyl-5-hepten-2-one 12.1

Esters

Ethyl butyrate 5.76

(Z)-3-hexenyl acetatea 11.58

(Z)-3-hexenyl butyratea 15.22

(Z)-3-hexenyl-2-methyl butyratea 15.53

Aromatics

Styrene 10.02

1,4-dichlorobenzene 13.99

Monoterpenes

Limonenea 8.45

(E)-b-ocimenea 9.87

Linaloola 17.41

Sesquiterpenes

(E)-b-caryophyllenea 18.36

a Compounds confirmed by authentic samples
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this compound resulted in a substantial decrease in landing

response. We concluded that (Z)-3-hexenyl acetate, non-

anal, (E)-b-ocimene, (E)-b-caryophyllene in Blend H were

essential compounds for attracting H. assulta female.

Discussion

Foliar, floral, and fruit odors can emit hundreds of com-

pounds, but studies of insect olfaction reveal that only a

minority of the components in the complex odor blend are

detected by the antennae of insects. Even fewer seem to be

involved in eliciting behavioral responses from insects

(Rojas 1999; Zhang et al. 1999; Fraser et al. 2003). Volatile

compounds of hawthorn fruit (Crataegus spp.) acted as

behavioral attractants for hawthorn-infesting Rhagoletis

pomonella flies (Nojima et al. 2003). Consistent EAD

activity was obtained for six chemicals, but selected sub-

traction assays showed that the four-component mixture of

3-methylbutan-1-ol, 4,8-dimethyl-1,3(E),7-nonatriene,

butyl hexanoate, and dihydro-b-ionone elicited levels of

upwind flight equivalent to the six-component mix.

Antennae of grapevine moth L. botrana responded to 27

compounds identified from grapevine as determined by

GC–EAD, but these compounds were in part behaviorally

redundant. The blend composed of (E)-b-caryophyllene,

(E)-b-farnesene, and (E)-4,8-dimethyl-1,3,7-nonatriene at

100:78:9 was as attractive as green grape clusters in wind

tunnel (Tasin et al. 2005, 2006a, 2007). Likewise, another

pest of grape P. viteana flied to grape shoots in the flight

tunnel (Cha et al. 2008a, b). Consistent EAD activity was

obtained for 11 chemicals in volatile compounds from

shoots of grape. Of these compounds, seven were found to

be essential for attracting moths.

There are more than eighty volatiles identified from

different varieties of tobacco (Loughrin et al. 1990; Yan

and Wang 2005; Cunningham et al. 2006; Raguso et al.

2006). In this study, we identified 25 compounds from the

collected volatiles of tobacco flowers, including 8 com-

pounds previously reported (Loughrin et al. 1990; Yan and

Wang 2005; Raguso et al. 2006). Nine compounds ((E)-b-

ocimene, octanal, (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol,

nonanal, (Z)-3-hexenyl-2-methyl butyrate, decanal, linal-

ool, and (E)-b-caryophyllene) elicited consistent antenna

responses in female H. assulta. The female moths exhibited

unwind flight in the wind tunnel when presented with the

9-component blend at the same ratio as in natural tobacco

floral collection. Based on the results of subtraction assays,

a 4-component blend of (E)-b-ocimene, (Z)-3-hexenyl

acetate, nonanal, and (E)-b-caryophyllene provided the

same level of activity as the 9-component blend, which

implies that the female moth of H. assulta can utilize only a

few plant volatiles to locate its suitable host plant, tobacco.

Six of the 9 components have been implicated in the host

location of other lepidopteran moth species. (Z)-3-hexenyl
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FID 
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2 3 45 
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Fig. 1 GC–EAD responses of

mated female H. assulta to

headspace volatiles from

tobacco flower. EAD-active

compounds: (1) (E)-b-ocimene;

(2) octanal; (3) (Z)-3-hexenyl

acetate; (4) (Z)-3-hexen-1-ol;

(5) nonanal; (6) (Z)-3-hexenyl-

2-methyl butyrate; (7) decanal;

(8) linalool; and (9) (E)-b-

caryophyllene

Table 2 The proportion and amount of the nine electrophysiologi-

cally active compounds identified from tobacco flowers in wind-

tunnel bioassay

Compounda Proportionb EAG

responsec
Amount loaded

on rubber

septum (mg)

(E)-b-ocimene 4.80 ???? 0.25

Octanal 1.00 ??? 0.05

(Z)-3-hexenyl acetate 1.22 ??? 0.06

(Z)-3-hexen-1-ol 3.06 ??? 0.15

Nonanal 1.92 ????? 0.1

(Z)-3-hexenyl

2-methyl butyrate

4.05 ?? 0.2

Decanal 1.04 ?? 0.05

Linalool 5.61 ??? 0.28

(E)-b-caryophyllene 9.74 ? 0.5

a In order of elution during gas chromatography
b Proportion relative to the chromatogram area of octanal expressed

as 1.00
c The relative EAG response strength of H. assulta to compounds

indicated by the number of crosses (????? for the strongest

reaction)
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acetate in chrysanthemum has been reported to elicit mated

M. brassicae female upwind flight (Rojas 1999). (E)-b-

caryophyllene identified from pigeonpea plants acted as an

attractant and oviposition stimulant for H. armigera

(Hartlieb and Rembold 1996). Linalool, in blends con-

taining (E)-b-caryophyllene, was tested as kairomone for L.

botrana (Tasin et al. 2007). A. conjugella was attracted to a

blend containing decanal in the field (Bengtsson et al.

2006). A 7-component blend including nonanal, decanal,

and (E)-b-caryophyllene elicited the oriented flight of P.

viteana females (Cha et al. 2008b). (E)-b-ocimene in

combination with nonanal and decanal attracted female M.

sexta (Fraser et al. 2003). To our knowledge, there is no

report on behavioral response to (Z)-3-hexenyl-2-methyl

butyrate by other lepidopteran insect species other than H.

assulta.

GC–EAD is an effective method for screening the

potential active compounds in insect behavior, but it has its

limitations because EAG recording is just the summation

of responses by all neurons on the antenna (Anderson et al.

1993; Burguiere et al. 2001). It is better to find more active

compounds by using gas chromatography linked to elec-

trophysiological recordings from single receptor neurons in

addition to GC–EAD method (Wibe 2004; Bichão et al.

2005), since sometimes there was no apparent correlation

between EAG response and behavioral activity of test

linalool, 50 µg

linalool, 500 µg

(E)-β−caryophyllene, 500 µg

octanal, 500 µg

nonanal, 500 µg

(Z)-3-hexen-1-ol, 500 µg

(Z) -3- hexeny1 acetate 500 µg

Fig. 2 Responses of different selective receptor neurons in H. assulta females tuned to linalool, (E)-b-caryophyllene, octanal, nonanal, (Z)-3-

hexen-1-ol, and (Z)-3-hexenyl acetate, respectively. The horizontal bar indicates the stimulation period (300 ms)
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compounds. Rojas (1999) working with cabbage moth, M.

brassicae (L.), found that allyl isothiocyanate was an

effective compound in stimulating upwind flight and

landing of the females, despite lack of EAG response to the

female antennae. In H. armigera, a closely related species

to H. assulta, the amplitude of the antenna response elicited

by (S)-(-)-limonene was difficult to discern above the

background responses, but its importance was demon-

strated in the wind-tunnel bioassay (Bruce and Cork 2001).

The discrepancy between antenna response and behavioral

activity was also found in other insects, such as codling

moth, C. pomonella (Ansebo et al. 2004); the almond moth,

Ephestia cautella (Olsson et al. 2005); and the mirid, Lygus

hesperus (Williams et al. 2010). In this study, we found

(E)-b-caryophyllene to elicit a particularly weak EAG

response despite the high levels present in tobacco head-

space, but it is an essential component for attracting the

female in wind tunnel. In contrast, compounds such as

octanal elicited larger EAG responses even in trace

amounts, but had only weak stimulatory effect (Figs. 1, 4).

Electrophysiological studies that use single sensillum

recordings may show more correspondence with behavioral

trials than EAG recordings (Bengtsson et al. 2009; Wil-

liams et al. 2010). By this method, five types of selective

ORNs have been identified in the antennae of H. assulta,

responding to (E)-b-ocimene, (E,E)-a-farnesene, (E,E)-

TMTT, geraniol, and germacrene D, respectively (Stranden

et al. 2003a, b). We found more types of ORNs specifically

responding to linalool, (E)-b-caryophyllene, octanal, non-

anal, (Z)-3-hexen-1-ol, and (Z)-3-hexeny1 acetate (Fig. 2).

Out of the 6 new odorants we have identified for H. assulta,

4 have previously been identified in Heliothis virescens,

and 2 in H. armigera (Røstelien et al. 2005). These same

functional receptor neurons in heliothine species suggest

that they evolve from a common origin independent on

their different host ranges. Linalool sensitive neuron type

was found to be the most frequent in female H. assulta,

however, it is in part behaviorally redundant. The linalool

ORN type was also found on the antenna of H. virescens

and H. armigera (Røstelien et al. 2005). It has been

reported that M. sexta and Anthonomus rubi have antennal

odor receptors tuned to linalool that are responding selec-

tively to the enantiomers (Reisenman et al. 2004; Bichão

et al. 2005). It is interesting to know whether the linalool

ORNs in H. assulta have the same molecular receptive

range to single enantiomers as those in other insect species.

Linalool is thought to be a typical constituent released from

many plants including tobacco (Røstelien et al. 2005;

Cunningham et al. 2006). In M. brassicae, there is one

neuron type for receiving the information about two

enantiomers of linalool, but with different intensity by the

use of gas chromatography linked to electrophysiological

recordings from single cells (GC-SSR) (Ulland et al. 2006).

However, Rojas (1999) showed that mated M. brassicae

females did not exhibit upwind flight when stimulated with

linalool in wind tunnel. This suggested that M. brassicae

may use linalool as a cue in nectar feeding but not in

oviposition (Ulland et al. 2006). In the study by Skiri et al.

(2005), H. virescens, another closely related species to
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caryophyllene. The curves with error bars were obtained from 3

neurons, and other curves showed the mean of 2 responses
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H. assulta, showed the ability to learn racemic linalool at a

much lower concentration (100 times lower) than b-o-

cimene and b-myrcene. We speculate that linalool may

play a more important role in feeding than in host-plant

searching behaviors for H. assulta.

Knowledge of the role of kairomones in host-finding by

insects is increasing. However, two contrasting hypotheses

have been proposed to understanding mechanisms of

olfactory cues for plant volatiles in insect–plant interac-

tions (Bruce et al. 2005). One hypothesis is that host

recognition relies on key compounds that are not found in

unrelated plant species. For example, allyl isothiocyanate

is produced only in five dicotyledonous families, and it is

the most prominent isothiocyanate in several cruciferous

plants (Rojas 1999). M. brassicae (L.) females have

evolved the ability to recognize the characteristic chemi-

cal, and are evoked the strongest behavioral response in

wind tunnel. A series of studies have indicated that many

compounds such as (E,E)-a-farnesene, butyl hexanoate,

and ethyl (2E, 4Z)-2,4-decadienoate can attract C. pomo-

nella moths or stimulate oviposition in wind tunnel or in

field trapping (Hern and Dorn 1999, 2004; Light et al.

2001). Recently, a study on Pachnoda interrupta showed

that racemic 2,3-butanediol is a powerful novel attractant

in the field captures (Bengtsson et al. 2009). Another

hypothesis is that some insects require ratio-specific odors

to be attracted to their host. Five esters composed of

propyl hexanoate, butyl hexanoate, hexyl butanoate, butyl

butanoate, and pentyl butanoate at a fixed ratio were

attractive to the apple maggot fly, R. pomonella (Zhang

et al. 1999). Birkett et al. (2004) showed that of the six

electrophysiologically active compounds identified from

wheat volatiles, none was behaviorally attractive to female

Sitodiplosis mosellana when present individually. The

synthetic mixture composed of nine compounds identified

from Datura wrightii flowers evoked foraging behavior in

M. sexta, but feeding responses elicited by single odorants

were not significantly different from those elicited by the

control (Riffell et al. 2009). The results reported in this

work support the second hypothesis. Host location of

gravid H. assulta females appears to be mediated by a

blend of compounds. These compounds are quite common

in many plant species. We suggest that ratio of these

compounds play an important role in host-plant selection

of H. assulta, and maybe also in other heliothine moth

species.

In conclusion, this study is the first report of host

location of H. assulta being mediated by plant-derived

volatiles. Nine compounds were identified from tobacco

extract by using GC–EAD and GC–MS, and a 4-compo-

nent blend played an essential role in attracting H. assulta

females. These chemical cues used in host-plant selection

by H. assulta could be useful in developing potent attrac-

tants for females other than pheromones for males. In the

near future, it is necessary to clarify the trapping efficiency

of the compound mixtures in the field. Also, further elec-

trophysiological studies by using single sensillum record-

ings are needed to identify more selective olfactory

receptor neurons, tuned to plant volatiles detected by H.

assulta.
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