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Agonistic behavior is crucial for conspecific members to maintain a social hierarchy, optimum population
density, and high fitness. It is known that agonistic behavior and social ranking often interact with hormones
such as testosterone (T) and glucocorticoids (GCs). The challenge hypothesis states that T levels in males are
promoted by the agonistic behaviors of other males and has beenwidely testified in many taxa of vertebrates,
even in humans, but seldom attempted in rodents. Here, we examined how fecal T and corticosterone (CORT)
concentrations changed during prolonged social conflict in male greater long-tailed hamsters (Tscheskia
triton). Dyads were subjected to 5 min staged encounters daily for 15 days during which agonistic and social
behaviors were recorded and fecal hormone concentrations were determined by radioimmunoassay. Our
results showed that pairwise male hamsters developed overt and stable dominant–subordinate relationships
rapidly and that the agonistic behavior decreased over the course of the experiment. Dominant males
exhibited more frequent flank marking and locomotion and shorter latency to initial attack than their
subordinate counterparts. Testosterone levels were significantly increased in both dominant and subordinate
males during early encounters, but T and CORT levels were higher in subordinate males. After five
encounters, we found no difference between hormone levels and behavior for all males, implying some kind
of behavioral and physiological habituation. This complex pattern of hormonal change during social conflict
is discussed and correlations between behavioral and physiological habituation are hypothesized.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Agonistic behavior is crucial for conspecific members to maintain a
social hierarchy, optimum population density, and high fitness
[1,2,14,41,47]. It is known that agonistic behavior and social ranking
often interact with hormones such as testosterone (T) and gluco-
corticoids (GCs) [1,11,14,19,28,37,41,44,47,55,56]. For example, social
dominance and agonistic behaviors can be enhanced by an increase in
T levels or suppressed by castration in mammals [5,6,27,35,42,59].
Testosterone levels in males are also promoted by social competition
between males with the degree of this change influenced by levels of
social instability, access to females, paternal care and mating systems
[22,32,38,55,56]. The challenge hypothesis has been proposed to
explain interactions between agonist behavior and testosterone levels.
This hypothesis states that T levels in males are promoted by the
agonistic behaviors of other males [56] and this has been widely
testified in many taxa of vertebrates, even in humans [33,54], but
seldom attempted in rodents [see only 7,37,47].
+86 10 64807099.
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Corticosterone (CORT), serving as a GC, is a reliable indicator of
social stress, such as social defeat, in vertebrates [8,11,14,16,40,44,49].
It is commonly accepted (termed the subordination stress paradigm)
that GC levels are often higher in subordinate animals than inwinners
of conflict or dominant individuals [31]. Few studies however, have
not found support for a correlation between blood GC levels and social
subjugation [3,49]. Such a discrepancy might be caused by studying
species with different levels of social interaction whereby an
individual may show physiological habituation following periods of
intense agnostic behavior accordingly [41,49].

In rodents, behavioral and physiological habituation is common
[40]. For example, in greater long-tailed hamsters (Tscheskia triton,
formerly rat-like hamster, Cricetulus triton) it has been shown that
agonistic behavior declines as a result of familiarity from continuous
encounters with between individuals [51,60]. Furthermore, social
challenges are often accompanied by social stress [14,44,47,56]. Here,
we examined how these two processes interact to shape agonistic
behavior in male–male encounters and the role of physiological
habituation.

To determine whether physiological habituation can arise from
behavioral habituation to continuous social competition, we utilized
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consecutive feces hormone sampling during chronic social interac-
tions. Blood-sampling is an accurate and sensitive technique widely
employed to measure hormone concentrations and to indicate
endocrine conditions [21]; however, it requires animal handling
which can artificially increase GC levels [34,50] and for rodents often
only provides limited data at a single point in time [50]. Feces
sampling overcomes these issues and is emerging as a popular tool to
measure hormone levels [9,20,50,53].

The greater long-tailed hamster is a solitary, polygamous rodent
dispersed throughout farmlands in northern China [57,59,60]. Males
possess a pair of flank glands and a midventral gland for chemical
communication; females are philopatric and have no stable mating
associationwith males [46,59–61]. Our previous work has shown that
intense agonistic behavior between individuals of the same sex [51,60]
and resulting social ranks are correlated to hormone levels [51,59],
and that flank gland size and marking behavior are associated with
social rank and reproductive hormones [51,59,60]. More recently, we
observed that long-term social interactions (male–male, female–
female) and subsequent social rank were not related to levels of sex
hormones or GC [60, authors' unpublished data], suggesting that T and
CORT levels may differ during the early and late stages of chronic
dyadic encounters.

Here, we aimed to ascertain a relationship between hormone
levels and agonistic behavior at the early and late stages of chronic
social interactions. We staged 5 min dyadic encounters between male
greater long-tailed hamsters every day, continuously observed their
behavior and measured fecal T and CORT concentrations. As the
challenge hypothesis posits, we predicted an increase in T levels for
both males and that levels would be higher in the subordinate or
defeated male. According to the subordination stress paradigm we
predicted that CORT levels would be higher during newer encounters
and decline over time as males' physiology habituated, and again that
subordinate males would have higher CORT levels than dominants.

2. Materials and methods

2.1. Animals and housing conditions

Healthy male adult (N120 g) greater long-tailed hamsters were
captured in farmlands in April of 2005 outside Beijing using live-traps
made of wire mesh. Hamsters were housed individually in stainless
steel cages (40 cm×20 cm×20 cm) containing cotton nesting
materials for 3 months prior to behavioral tests. The housing room
was maintained at 20±2 °C with a reverse light/dark cycle (16L:8D
with light on at 17:00) and food and water were provided ad libitum.
All procedures complied with guidelines for animal use and care as
stipulated by the Institute of Zoology, Chinese Academy of Sciences.

2.2. Behavioral procedures

Weused the bodymass asymmetrymethod to establish dominant–
subordinate relationship for higher social stabilities as described by
Earley et al. [14] and Wang et al. [52]. We selected 20 males and
assigned them into ten fixed pairs, each pair of which consisted of a
heavy (167.8±1.96 g; n=10) and light male (2±2.95 g; n=10).

Establishing dominant–subordinate relationships was performed
following the protocols of Wang et al. [51]; namely, the staged dyadic
encounters took place in a neutral arena (Plexiglass box measuring
60 cm×40 cm×100 cm), in which two screens were placed parallel
with the lateral wall that reduced intensity of aggression and provided
a buffer for losing males to avoid further attack by winning males. The
arenawas divided into equal compartments using a removable opaque
partition and males were placed into each compartment for an
acclimatization period of 3 min. The opaque partition was then
removed andmales were allowed to freely interact for 5 min. This was
repeated once each day for fifteen consecutive days for each dyad.
Encounters were recorded using digital video and all behavioral tests
were conducted under dim red illumination during the first 2 h
(09:00–11:00) of the dark cycle. The arena was thoroughly cleaned
between trialswithwater and 75% ethanol. After these tests, we placed
each dyad close together to allow them to have continuous sensory
contact with no physical interaction following Bartolomucci [4].

All behaviors during the 5 min encounters on days 1, 3, 5, 7, 9, 11, 13
and 15 only were quantified using OBSERVER V5.0 (Noldus, NL).
Behaviorsweredefinedas follows [23,45,51,59,60]:aggression, including
attack, sideway posture, biting, and chasing; defense, fleeing, upright,
cowering, threatening, and lying on their back on the ground; flank
marking, arching back and rubbing toward thewall; locomotion, moving
and exploring the environment; and initial attack latency was the time
delay between the begin of dyadic encounters and the first attack by
each male. Among them, aggression and defense were defined as
agonistic behaviors. Males from each pair were recorded as either a
winner or a loser by quantitatively comparing their attack score in every
daily encounter bout. The individual with the higher attack score was
considered the winner. After 15 days, the male in each pair displaying
more wins than losses was defined as dominant and the other male as
subordinate [51].

2.3. Hormone analysis

2.3.1. Feces sampling
Fresh feces was collected over 2 h and commenced 5 h [24,34,50]

after a staged encounter. We collected feces on day 0, 1, 3, 5, 7, 9, 11, 13
and 15 and all sampleswere stored at−20 °C until radioimmunoassay.

2.3.2. Hormone extraction and radioimmunoassay
Fecal sampleswere dried at−80 °C for 24h in a series vacuum freeze

dryer (Christ, Delta 1 A, Osterode, Germany), and then thoroughly
crushed with a mortar and pestle. A 100 mg fecal sample was extracted
with 1ml of water and 2ml of dichloromethane for fivemin on a vortex
(Haimen Kylin-Bell, Haimen City, China), fragmented for 1 min using
ultrasonic wave and shaken vigorously on a motorized shaker for 1 h.
After centrifugation at 4000 rpm for 30 min, 1 ml of the bottom
(dichloromethane) layer was stored in a polypropylene micro-centri-
fuge tube and evaporated to dryness with pure N2. The dried samples
were stored at −80 °C until radioimmunoassay of T and CORT.

Each dried sample was first dissolved in 600 μl phosphate buffer
solution (0.1 M, pH 7.0) and then quantified in a single radio-
immunoassay (RIA) [29,58] by 125I RIA kit. Testosterone kits were
provided by the Beimian Institute of Biotechnology (Beijing, China) and
corticosterone kits was provided by Diagnostic Systems Laboratories,
Inc. (Texas, USA). The human antiserum usedwas highly specific for the
hormones; cross-reactivity with other steroid hormones was b0.01%;
intra-assay variability was b10% for all samples. The detectable ranges
were 2–2000ng/dl and 10–2000ng/ml for Tand CORTrespectively. The
formula to calculate feces hormone levels was as follows:

Feces hormone content (ng/g)=hormone concentration (ng/
ml)×0.6 (ml)×2/0.1 (g).

2.3.3. Comparisons between fecal and serum hormone levels
To compare T and CORT levels present in feces with those in blood,

twelve additional adult males (N120 g) were randomly selected and
assigned into three groups of four: intact group (I), castrated group (C),
and castrated+testosterone treatment group (C+T). We collected
feces and serum samples of three groups four weeks after males were
castrated. In the C+T group castrated males received 10 mg/kg
testosterone propionate in gingili at 09:00 and we collected feces
samples for 2 h. On the following day, all hamsters were euthanized
between 09:00 to 10:00. A cage containing a hamster was encased in a
plastic bag and a cotton ball soaked in ether was placed inside. Once
animals became unconscious they were removed from the cage and
decapitated so arterial blood from the neck could be collected. The



Fig. 1. Numbers (mean±SE) in 5 min of aggression (a), defense (b), flankmarking (c) and locomotion behaviors (d) of dominant (n=10) and subordinate males (n=10) during the
15-day chronic social interaction. ⁎Pb0.05 and ⁎⁎Pb0.01 (indicating significant differences between dominant and subordinate males).

Fig. 2. Latency to attack for dominant (n=10) and subordinate (n=10) hamsters
during 15-day chronic social interactions between paired males. ⁎Pb0.05 and ⁎⁎Pb0.01
(indicating significant differences between dominant and subordinate males).
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wholeprocess fromsealing the cage todecapitation took less than3min.
Blood sampleswere then centrifuged at4000 rpmfor30min, and serum
aliquotswere stored in apolypropylenemicro-centrifuge tube at−20 °C
until radioimmunoassay of testosterone and corticosterone. Hormone
radioimmunoassay kits were the same as above.

2.4. Statistical analysis

One-way ANOVAswith repeatedmeasures were used to determine
differences between behaviors and hormones levels within (sam-
pling-time groups) and between groups (dominant and subordinate
groups). Differences in behavior and hormone levels between
dominant and subordinate groups were analyzed using two-tailed
paired t-tests (if data were normally distributed) or non-parametric
Wilcoxon matched pairs test (if data were not normally distributed).
Correlations between behavior and hormone levels were analyzed
using a Pearson Correlation (if data were normally distributed) or
Spearmen Correlation (if data were not normally distributed). The
level of significance (α) was set at 0.05 for all tests.

3. Results

3.1. Behavior

The winner–loser relationship quickly formed in every encounter
(Fig. 1). Heavier males displayed higher levels of aggression than their
lighter counterparts (F1, 18=10.445, P=0.005) on every test day except
Day 15 (Fig. 1a), while lighter males showed higher defensive behavior
(F1, 18=14.337, P=0.001; Fig. 1b). Consequently, all males in the heavy
group were classified as dominant and their lighter opponents as
subordinate. Flank marking behavior (F1, 18=25.297, Pb0.001; Fig. 1c)
and locomotion behavior (F1, 18=52.074, Pb0.001; Fig. 1d) was also
more common in dominant males from the first encounter (Fig. 1c).
From a visual inspection of Fig. 1 it is apparent that agonistic behaviors
declined temporally, but flank marking and locomotion did not.
Latency to attack in dominant and subordinate males increased over
the duration of the experimental period (dominant: df=7, F=2.506,
P=0.024; subordinate: df=7, F=6.070, Pb0.001; Fig. 2), but was
significantly shorter in dominant males (Fig. 2).

3.2. Fecal hormone concentration

Fecal T and CORT concentrations were correlated with concentrations
of these hormones in blood samples, thus indicating that hormone levels
in the fecal samples reliably reflect hormone levels in the blood (Fig. 3).
We found no significant difference in fecal T and CORT between heavy
(dominant) and light (subordinate)males prior to the commencement of
staged encounters (T: t=0.436, P=0.672; C: t=0.473, P=0.644);
however, following the first encounter subordinate males showed higher
T and CORT levels than dominant males (T: F1, 18=4.476, P=0.049;
C: F1, 18=8.085, P=0.011). This pattern was maintained across the



Fig. 3. Scatter plots showing log10 [feces hormones] and log10 [serum hormones] of
intact males (I, n=4), castrated males (C, n=4) and castrated with testosterone
treatment males (C+T: n=4). (a): Testosterone, (b): corticosterone.

Fig. 4. Changes of fecal testosterone (a) and corticosterone (b) levels (mean±SE) in
dominant (n=10) and subordinate males (n=10) during the 15-day social interaction
period. Hormone levels at day zero denote hormone levels before social interactions
(heavymass group: n=7, lightermass group: n=8). ⁎Pb0.05 and ⁎⁎Pb0.01 (indicating
significant differences between dominant and subordinate males).
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experimental period (T: F1, 18=4.476, P=0.049; C: F1, 18=8.085,
P=0.011; Fig. 4).

Compared with their baseline hormonal data collected on Day 0,
subordinate males showed significantly higher T levels on Day 1
(t=2.729, P=0.015) and Day 3 (t=2.754, P=0.014) and higher C
levels onDay 1 (t=3.139, P=0.006), Day 3 (t=2.463, P=0.025), Day 9
(t=2.267, P=0.038), Day 13 (t=2.253, P=0.039) and Day 15
(t=2.453, P=0.026). This pattern was not found for dominant males
as T levels showed a significant increase on Day 3 only (t=2.488,
P=0.025; see Fig. 4).

3.3. Correlations between hormones and agonistic behaviors

There was a positive correlation between hormone levels and
defense behavior (T: r=0.291, P=0.013; cor: r=0.399, P=0.001) in
subordinate males across the experimental period; however, this
pattern was strongest between Day 1 and 5 only (T level: r=0.444,
P=0.018; C level: r=0.562, P=0.002). No correlation was found
betweenhormone levels andaggressive behavior for anygroupofmales.

4. Discussion

4.1. Behavioral habituation: agonistic behavior was weakened

Under chronic social encounters, agonistic behaviors tend to be mild
and low, and chemical communication gradually increases to a relatively
higher level, characterizing the formed dominant–subordinate relation-
ships [1,13,17,25,45,51]. Concurrent with this idea, our results showed
that all heaviermale greater long-tailedhamstersdominated their lighter
opponents and exhibited more frequent aggressive behavior, flank
marking and a shorter later to initial attack everyday social encounters
across fifteen consecutive days. After dominance–subordination was
developed in the initial 5 days, agonistic behavior became weaker and
latency to attack greater.

4.2. Testosterone and social interaction

Social rank is closely related to reproductive success, use of space
and the defense of resources. Dominant individuals often gain more
benefits than subordinates in this regard [2]. In vertebrates, it is
generally accepted that increased T concentrations increases male
aggression and social dominance [27,42,60], whereas social challenge
also influences T level [36,47,55]. However, such interactions can shift
before and after social relationships are established. Increases in the
level of T usually occurs when males suffer high social challenges, e.g.
to establish dominance hierarchies, to defend territory and females,
and competition with other males for access to females [44,47]. In
periods of high social instability, T levels are often positively
correlated with agonistic behavior [38]. For example, aggressive
behavior displays in the Japanese quail (Coturnix coturnix) were
positively correlated with plasma T levels only before the stable social
relationship was established [38]. Our results showed some support
for the challenge hypothesis whereby T levels of both dominant and
subordinate males were elevated, and in subordinate males T levels
were positive correlated with agonistic behavior during the early
stages of social conflict [55,56].

Of note is that T levels exhibited amore rapid elevation and reached a
higher concentration in subordinate males. Elevation in T therefore
appears to adjust agonisticmotivation,whichmayenhance the desire of
losers to compete again for status [26,32,36]. For example, saliva T
elevation in men more likely appeared in those losers who showed
competition again, while T changes of winners were unrelated to
decisions to compete again [32]. Likewise, in marmosets (Callithrix
kuhlii), intruder males suffer a greater number of defeats by residents
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and show enhanced T levels at 2–6 h and 24 h [41]; however, we did not
observe this increase in aggression of subordinate males. This type of
discrepancy between T levels and aggressionwas probably the result of
differences in body mass between dominant and subordinate males,
which might counteract the increase in aggression owing to T levels of
subordinate males.

In addition, our data shows that once dominant–subordinate
relationships were established, differences in T levels between
dominant and subordinate males disappeared. This pattern has been
observed in mice (Mus musculus) undergoing a 10 day social
interaction [28] and in golden hamsters undergoing a 12 day social
interaction [10] and might partially reflect a physiological habituation
to chronic social competition.

It is likely that increased fecal testosterone levels are related to
changes in plasma binding proteins rather than testosterone itself.
Changes in plasma binding proteins would enhance testosterone access
to the liver and consequent catabolism [30]. Food intake would have
changed between dominants and subordinates during the experimental
period, and might affect fecal levels. An important caveat as previous
work suggests that food restriction for four weeks significantly
decreased testosterone levels of greater long-tailed hamsters [30]. In
this study, after a 5min encounter each daymaleswere kept in separate
cages. Food andwaterwasprovidedad libitumbut in theory, subordinate
males might reduce their food intake under higher social stress. It is
possible then that changes in food intake might have affected
testosterone levels detected using the fecal sampling method; this
should be explored in further studies on this species.

4.3. Corticosterone and social interactions

There are considerable controversies over the relationship between
GC levels and social status [11,31]. Recent research appears to contradict
the traditional belief that animals in lower social status should have
higher CORT levels [3,11]. However, our results clearly showed that fecal
CORT Levels in subordinatemales dramatically increased after the initial
social interaction and stayed higher as compared to either their baseline
CORT levels or the CORT levels of dominant males. In addition, fecal
CORT levels were positively correlated with the frequency of defensive
behavior in subordinatemales, but not in dominants. The elevated CORT
Levels of subordinate males suggested that they suffered a greater level
of social stress than dominantmales as predicated by the subordination
stress paradigm [31].

In social conflicts, acute social stress elevates GC levels within 20–
40min to prepare animals for fight or flight [12,24,48] and is essential to
their survival [40]. However, long-term high GC levels can result in
harmful effects, such as reproductive and immune suppression [8].
Under chronic stimulation, physiological habituation usually occurs to
eliminate the negative influences of elevated GC concentrations on the
health of animals [8,24,40,41,43,44]. We found physiological adaptation
as well as behavioral adaptation occurred in during the later periods of
social conflict. In addition, CORTand CRFmight have been influenced by
differences in food intake and gut motility between dominant and
subordinatemales [15,18,39]. Teasingapart these effects should form the
basis of future studies of this nature.
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