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Abstract

Motivation: Single-cell sequencing (SCS) data provide unprecedented insights into intratumoral heterogeneity.
With SCS, we can better characterize clonal genotypes and reconstruct phylogenetic relationships of tumor cells/
clones. However, SCS data are often error-prone, making their computational analysis challenging.

Results: To infer the clonal evolution in tumor from the error-prone SCS data, we developed an efficient computa-
tional framework, termed RobustClone. It recovers the true genotypes of subclones based on the extended robust
principal component analysis, a low-rank matrix decomposition method, and reconstructs the subclonal evolution-
ary tree. RobustClone is a model-free method, which can be applied to both single-cell single nucleotide variation
(scSNV) and single-cell copy-number variation (scCNV) data. It is efficient and scalable to large-scale datasets. We
conducted a set of systematic evaluations on simulated datasets and demonstrated that RobustClone outperforms
state-of-the-art methods in large-scale data both in accuracy and efficiency. We further validated RobustClone on
two scSNV and two scCNV datasets and demonstrated that RobustClone could recover genotype matrix and infer
the subclonal evolution tree accurately under various scenarios. In particular, RobustClone revealed the spatial pro-
gression patterns of subclonal evolution on the large-scale 10X Genomics scCNV breast cancer dataset.

Availability and implementation: RobustClone software is available at https://github.com/ucasdp/RobustClone.

Contact: lwan@amss.ac.cn or maliang@ioz.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumor evolution has been a subject of longstanding discussion
(Nowell, 1976). Understanding evolutionary mechanisms underly-
ing cancer progression and characterizing intra-tumor heterogeneity
are believed to guide the principles in predicting and controlling can-
cer progression, metastasis and therapeutic responses (Schwartz and
Schäffer, 2017). A tumor is comprised of subpopulations of cells
with distinct genotypes called subclones (Lawson et al., 2018). By
taking the advantage of high-throughput next-generation sequenc-
ing, computational methods based on bulk DNA-sequencing data
have been developed to deconvolve subclonal genotypes and/or infer
their evolutionary relationships (Deshwar et al., 2015; El-Kebir
et al., 2015, 2016, 2018; Jiang et al., 2016; Jiao et al., 2014;
Zaccaria et al., 2018; Zare et al., 2014).

The rapid advances in single-cell sequencing (SCS) technology
have greatly enhanced the resolution of tumor cell profiling and are
expected to better characterize intratumoral heterogeneity (Lawson
et al., 2018; Navin, 2014). While pioneer works utilize single-cell

copy-number variation (scCNV) profiles to construct tumor cell
phylogenies (Navin et al., 2011; Wang et al., 2014), many others
work on single-cell single nucleotide variation (scSNV) data with ap-
plication of traditional phylogenetic methods. Xu et al. (2012) and
Yu et al. (2014) applied distance-based methods, UPGMA or neigh-
bor-joining (Felsenstein, 2004), on kidney cancer and colon cancer.
More complex models, such as maximum likelihood or Bayesian
(Yang, 2014), have also been applied to infer tumor phylogeny with
scSNV data (Eirew et al., 2015; Hughes et al., 2014).

Although promising, current SCS data are known to be error-
prone due to technique issues, thereby limiting the direct application
of traditional phylogenetic approaches to the data. Four common
types of errors are often associated with SCS data: false positive (FP)
and false negative (FN) mutations, missing bases (MBs), as well as
doublets. FPs and FNs are usually caused by allelic dropout events, a
very common problem in SCS in which one or both alleles fail to
amplify. The FN rate (FNR) varies from 0.1 to 0.43, as reported in
many studies (Gawad et al., 2014; Hou et al., 2012; Wang et al.,
2014; Xu et al., 2012). FPs occur on the order of � 10�5, which
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exceeding the somatic mutation rate (Hou et al., 2012; Wang et al.,
2014; Xu et al., 2012). MBs may issue from insufficient sequencing
coverage. The reported missing rate (MR) can be as high as 58% in
SCS data (Gawad et al., 2014; Hou et al., 2012). Another source of
error in SCS data is cell doublets, which result from unintended
measurement of two or more cells (Roth et al., 2016; Zafar et al.,
2017). Cell doublet rates vary greatly depending on the isolation
technique. For example, in fluorescence-activated cell sorting, the
cell doublet rate is reported <1%, while in oral pipette and droplet
encapsulation techniques, the doublet rate is reported from 1% to
10% (Zafar et al., 2017). When these errors occur together in data,
the downstream analysis can be greatly biased.

Methods that explicitly account for errors in SCS data, especially
scSNV data, have emerged in recent years. SCITE (Jahn et al., 2016)
and OncoNEM (Ross and Markowetz, 2016), model the noise of
SCS, as well as construction of mutation or subclonal trees based on
scSNV. SCG (Roth et al., 2016) also models various technical errors
by clustering single cells into subclones with a hierarchical Bayesian
model and then inferring the subclonal genotypes. These methods
are constructed under the infinite site model (ISM), although some
account for loss of heterozygosity (LOH), the presence of recurrent
mutations is prohibited. This assumption may often be violated in
human tumor evolution, where recurrent events, such as back or
parallel mutation, as well as LOH all could happen (Davis and
Navin, 2016). SiFit (Zafar et al., 2017), a likelihood-based ap-
proach, has employed the finite site model (FSM) of evolution and
infers cell phylogeny to account for SCS errors. BEAM (Miura et al.,
2018) is a Bayesian method that has no explicit restrictions on muta-
tion model. It improves the quality of single-cell sequences by using
the intrinsic evolutionary information in single-cell data in a molecu-
lar phylogenetic framework. Among the above-mentioned methods,
each has its own merits, as they all perform acceptably well under
the present amount of small or moderate data size (e.g. the number
of cells � 500). In recent years, single-cell techniques are rapidly
evolving, therefore, lowering the cost of sequencing (Lan et al.,
2017). The size of single-cell samples, and the number of mutations,
both in forms of SNV and CNV, which can be used in the analysis,
are expected to increase in the very near future (Shapiro et al.,
2013). These advances could result in a dramatic increase of compu-
tational intensity, especially for likelihood-based or Bayesian-based
algorithms.

Recently, the low-rank matrix factorization method, robust prin-
cipal component analysis (RPCA), for recovering low-dimensional
subspace from corrupted data, i.e. the data contaminated by an
amount of noise, is being extensively studied (Candes et al., 2011;
Hsu et al., 2011; Lin et al., 2011; Vidal et al., 2016). RPCA is a gen-
eralization of the standard principal component analysis (PCA) by
introducing some robustness. Instead of approximating observation
with a low-rank matrix, as in PCA, RPCA approximates observed
matrix by decomposing it into the sum of a low-rank matrix and a
sparse matrix that models the corrupted variables. The decompos-
ition of RPCA can be implemented by scalable and fast algorithms,
such as the Augmented Lagrange Multiplier Method (ALM) (Lin
et al., 2011). RPCA can be extended naturally to model corrupted
data in the presence of missing entries (Vidal et al., 2016). It has
wide applications in fields, such as image processing (Vidal et al.,
2016) and bioinformatics [e.g. the imputation of single-cell RNA-
sequencing data (Chen et al., 2020)].

Cancer cells within a tumor are often heterogeneous.
Nevertheless, these cells usually form into subpopulations (sub-
clones) with nearly or completely identical genetic composition.
Therefore, the number of subclones should be in general much less
than the number of cells or the number of mutated sites. On the
other hand, the observed single-cell genotype matrix (GTM) is often
incorporated, besides missing entries, with random noise caused by
technical errors. Thus making the GTM recovery problem fits per-
fectly to the RPCA framework, which has the low-rank plus sparse
matrices assumption. In this study, we present RobustClone, a com-
putational framework allowing for the recovery of subclone geno-
types based on observed GTM of either scSNV or scCNV data, and
reconstructing the subclonal evolutionary tree. RobustClone utilizes

the extended RPCA method, which can accommodate GTM with
missing entries. Using simulated and real data, we demonstrate the
power of RobustClone in recovering real GTM and reconstruction
of subclonal evolutionary trees under various scenarios. We also
show the efficiency of RobustClone on applications to large-scale
data.

2 Materials and methods

In this section, we first introduce RPCA and the extended RPCA
algorithms, which are used to recover the low-rank subspace from
data matrix with corrupted and/or missing entries (Section 2.1); we
then describe how the proposed computational framework, termed
RobustClone, recovers the true GTM of tumor cells, identifies
tumor subclones and reconstructs subclonal evolutionary trees, all
based on tumor SCS data (Section 2.2). Finally, we provide details
of the evaluation methods (Section 2.3) and the simulated and real
data used (Section 2.4).

2.1 RPCA and extended RPCA
2.1.1 Robust principal component analysis

As a popular tool to recover low-rank matrix, standard PCA is
based on the assumption that all sample points are drawn from the
same statistical or geometric model (Vidal et al., 2016). In practice,
however, the entries of data matrix can be corrupted by gross errors,
making standard PCA less robust to intra-sample outliers (Vidal
et al., 2016). In this regard, Candes et al. (2011) proposed the
RPCA to recover low-rank matrix from data with corrupted entries.
The RPCA problem can be solved with the ALM, a fast and scalable
algorithm proposed by Lin et al. (2011).

Assume that the data matrix Dm�n is generated as the sum of
two matrices D ¼ A0 þ E0, where A0 represents a low-rank data
matrix, while E0 represents the intra-sample outliers. We further as-
sume that many entries of D remain intact, thereby causing many
entries of E0 to be zero. The RPCA problem can be formulated as
decomposing matrix D into the sum of a low-rank matrix A and a
sparse matrix E, satisfying

min
A;E

rankðAÞ þ kjjEjj0; s:t: Aþ E ¼ D; (1)

where jjEjj0 is the number of non-zero entries in E, and k is the regu-
larization parameter that balances the two terms. However, the task
of recovering the low-rank matrix A and the sparse signal E in
Problem (1) is generally NP-hard (Vidal et al., 2016).

In order to efficiently compute and solve this problem, Problem
(1) can be convex relaxed, as

min
A;E
jjAjj� þ kjjEjj1; s:t: Aþ E ¼ D; (2)

where jj � jj� and jj � jj1 denote the nuclear norm and the ‘1 norm of
matrix, respectively. We call Problem (2) the relaxed version of
RPCA. It has been theoretically validated that the relaxed RPCA can
decompose D and exactly recover the unknown matrices A and E
with a probability of almost one under rather broad conditions (see
Vidal et al. 2016; Candes et al. 2011). The optimal choice of k has
been shown to be k0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞ

p
(Candes et al., 2011; Vidal

et al., 2016).
The constrained optimization problem (2) can be solved by the

ALM algorithm proposed by Lin et al. (2011), a special case of the
alternative direction method of multipliers. It can be applied on the
following augmented Lagrangian function:

LðA;E;K;lÞ ¼ jjAjj� þ kjjEjj1þ
hK;D�A� Ei þ l

2
jjD�A� Ejj2F;

(3)

where jj � jjF is the Frobenius norm of matrix, K is the Lagrange
multiplier, h�; �i is the inner product and k and l are the regulation
terms. See details of the algorithm in Supplementary Note 1 and
Algorithm S1.
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2.1.2 Extended RPCA

We further extend RPCA to the cases where entries in the data ma-
trix are not only corrupted but also incomplete. In order to handle
the missing entries, we define a linear operator PXðDÞ, which maps
the missing/incomplete entries to 0, while keeping the observed
entries, as

½PXðDÞ�ij ¼ f
Dij; if ði; jÞ 2 X;
0; otherwise:

The extended RPCA problem is then formulated as follows
(Shang et al., 2014; Vidal et al., 2016; Wright et al., 2012):

min
A;E
jjAjj� þ kjjEjj1; s:t: PXðAþ EÞ ¼ PXðDÞ; (4)

with the intention of recovering the low-rank matrix and the sparse
component (A, E) of D ¼ Aþ E only from the observations PXðDÞ.
The low-rank and sparse components can also be exactly recovered
with high probabilities under conditions similar to those for RPCA
(Shang et al., 2014; Vidal et al., 2016; Wright et al., 2012). Shang
et al. (2014) show that the optimization problem (4) is equivalent to
the following constrained optimization problem:

min
A;E
jjAjj� þ kjjPXðEÞjj1 s:t: Aþ E ¼ D; (5)

which can be solved by applying the ALM algorithm
(Supplementary Algorithm S2) with the following augmented
Lagrangian function:

LðA;E;K;lÞ ¼ jjAjj� þ kjjPXðEÞjj1þ
hK;D�A� Ei þ l

2
jjD�A� Ejj2F:

(6)

In choices of k, we put more weight on jjPXðEÞjj1 when the data
matrix has higher MR, i.e. k ¼ k0ð1þ 3�MRÞ ¼ ð1þ 3�
MRÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm; nÞ

p
. When there are no missing entries (MR ¼ 0),

then k ¼ k0, which is the theoretical optimal choice of k for general
RPCA.

2.2 RobustClone
We next introduce the proposed computational framework,
RobustClone, which lays on the foundation of RPCA and extended
RPCA. It applies to tumor SCS data to recover the true genotypes of
cells, identify subclones and reconstruct subclonal evolution trees.

RobustClone takes input of the observed GTM Ym�n ¼ ½yij�m�n

from either scSNV or scCNV data, where yij denotes the genotype of
locus j 2 f1; . . . ; ng of individual cell i 2 f1; . . . ;mg. The value of yij

can be either binary (e.g. yij 2 f0; 1g: ‘0’-unmutated, ‘1’-mutated) or
ternary (e.g. yij 2 f0;1; 2g, the number of mutant alleles) for scSNV
data, and it can be a non-negative integer for scCNV data (e.g.
yij 2 f0; 1; 2; . . . ; pg, e.g. the number of copies of a DNA fragment,
where usually the normal case in the diploid genome has yij ¼ 2).
We use ‘NA’ for entries in the GTM with incomplete or missing val-
ues. The flowchart of RobustClone is shown in Figure 1. The main
steps for RobustClone are organized in the following subsections.

2.2.1 Recover the true GTM of cells

RobustClone will first recover a matrix X, which approximates the
underlying true genotypes of subclones of cells, from the original
observed matrix Y. Since tumor cells are clustered into homogenous
subpopulations (subclones) and cells within the same subpopulation
are much more similar, with identical genotype or minor/rare varia-
tions, than those outside of the clusters. Thus, the underlying low-
dimensional structures of cell populations are embedded in the noisy
observed matrix Y. Therefore, we apply the RPCA method to re-
cover the low-dimensional subspace X from Y, as follows:

Y ¼ Xþ E; (7)

where X represents a low-rank matrix, which approximates the
underlying genotypes of cell subpopulations (subclones), while the
sparse matrix E represents the noise in the original data as well as

cell-specific variations. For scSNV data with binary values, E con-
tains the noise caused by technical errors, such as FPs, FNs and cell

doublets. For scCNV data, E can be the noise generated by DNA
sequencing and/or the errors caused during the estimation of copy
numbers.

When there are no missing entries in Y, RobustClone applies the
RPCA model (2). While in cases with missing entries, the extended

RPCA model (5) is applied to recover the low-rank matrix X
(Fig. 1A).

2.2.2 Identify subclones by Louvain–Jaccard clustering method

Since the imputed and recovered low-rank GTM X may not guaran-

tee an error-free state, we cannot identify subclones simply by aggre-
gating the identical rows of X. Instead, RobustClone clusters cells

into subclones by applying the Louvain–Jaccard method (Blondel
et al., 2008; Levine et al., 2015) on X.

The Louvain–Jaccard method is a network-based fast commu-
nity detection algorithm, which has wide applications in the cluster-
ing of single-cell RNA-sequencing data (Shekhar et al., 2016)

(Fig. 1B). The community detection algorithm is based on the idea
of modularity, as described by Newman and Girvan (2004), the ra-
tionale being that nodes within the same community have more con-

nected edges than nodes between communities. In its
implementation, the Louvain–Jaccard method first constructs a k-

nearest neighbor graph of m cells based on Euclidean distance and
then clusters cells into subpopulations. The choice of parameter k is
empirically dependent on the sample size (number of single cells),

and we demonstrate that the results by Louvain–Jaccard algorithm
is robust to the choices of k (see Supplementary Note 2 and Figs

S11–S13).
The Louvain–Jaccard algorithm does not require pre-

specification of the number of subclones, and it is fast and scalable
that can be applied to large-scale datasets. However, we want to em-
phasize that RobustClone is not restricted to the Louvain–Jaccard

algorithm. Clustering methods, such as hierarchical clustering and
K-means algorithm, can also be adopted by RobustClone to identify
subclones.

Fig. 1. Overview of the computational framework of RobustClone that recovers the

true genotypes of cells, identifies subclones and reconstructs subclonal evolution

trees using tumor SCS data. (A) RobustClone decomposes the observed genotype Y

into the sum of the low-rank GTM X and a sparse matrix E by RPCA or the

extended RPCA model. (B) RobustClone divides the individual cells into clusters, as

our identified subclones, by applying the Louvain–Jaccard method on the recovered

low-rank GTM X. (C) RobustClone reconstructs the subclonal evolutionary tree:

RobustClone identifies the subclonal tree by finding the MST using Euclidean dis-

tance after extracting the consensus subclonal genotypes; the radius sizes of the

nodes on the subclonal tree are proportional to the number of cells contained in

each subclone. (D) The subclonal evolutionary tree that describes the subclonal de-

velopment of the tumor and the newly mutated genotypes of each subclone from its

parent subclone
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2.2.3 Reconstruct subclonal evolution tree

RobustClone reconstructs the subclonal evolution tree of tumor by
the following two steps.

First, extracting subclonal genotypes. Since the cells within the
same subclone identified by the Louvain–Jaccard method in Section
2.2.2 are homogeneous, with genotypes being identical or almost
identical. RobustClone simply extracts the consensus genotypes for
each genetic site: (i) for scSNV data, the genotype with highest fre-
quency among cells within the same subclone is selected as the con-
sensus, and (ii) for scCNV data, the median of the copy numbers
among the cells from the same subclone is taken. The vector of con-
sensus genotypes is then defined as the subclonal genotype by
RobustClone.

Second, reconstructing the subclonal evolutionary tree (Fig. 1C
and D). RobustClone calculates the Euclidean distance between
each pair of subclones using their subclonal genotypes and then
finds the minimum spanning tree (MST) among the subclones based
on their distances. To determine the root of the tree, RobustClone
selects the subclone that has the shortest Euclidean distance to a
given reference/normal sample. We want to note that, it is also pos-
sible to construct the cell tree, by applying classic phylogenetic algo-
rithms, with the recovered GTM.

2.3 Evaluations
We compare the performance of RobustClone to state-of-the-art
methods (Jahn et al., 2016; Miura et al., 2018; Ross and
Markowetz, 2016; Roth et al., 2016; Zafar et al., 2017) under vari-
ous simulated scenarios. The evaluations are based on several met-
rics that measure different aspects of the goodness of the recovered
GTM, including: (i) the FPs þ FNs ratios of output GTM to input
GTM, (ii) the percentage of correctly imputed MBs and (iii) the
error rate of the recovered GTM to the ground truth. Metrics (i) and
(ii) were also utilized by Miura et al. (2018).

In addition, we evaluate and compare the tree reconstruction
error of subclonal trees, which is calculated as the average differen-
ces between the shortest pairwise cell distance along the recon-
structed and the true subclonal trees (Ross and Markowetz, 2016).
When applying tree reconstruction error, cells are represented with
subclonal genotypes. RobustClone, OncoNEM, SCG and BEAM
have built-in subclonal inference steps. For SiFit and SCITE, we
apply K-medoids clustering based on the distance of cell along their
reconstructed cell lineage tree (SiFit) or mutation tree (SCITE) to
cluster cells. The best number of clusters is determined by maximiz-
ing silhouette score (Zafar et al., 2017). Each cell within a cluster is
assigned with a subclonal genotype that corresponding to its cluster
medoid cell (details refer to Supplementary Note 5).

For the simulation datasets with doublets, we calculate the first
three evaluations with the cells after removing doublets and measure
the tree reconstruction error between the true tree and the inferred
tree with doublet cells excluded.

2.4 Data
2.4.1 Simulation data

We simulated 360 datasets with various changing factors: number
of cells (m), number of SNVs (n), number of subclones (s), FPR (a),
FNR (b), MR (c) and doublet rate (d). Amongst, 350 datasets are
simulated under ISM, which we divided into 7 groups (referred as
G1–G7) with each containing 50 datasets (details refer to
Supplementary Note 3). For each group, we set one or two changing
factors, while keep the rest fixed. For each setting of factors, 10 rep-
licate datasets are simulated. Unless otherwise noted, we set the de-
fault technical errors to FPs (a ¼ 1%), FNs (b ¼ 20%), MBs
(c ¼ 20%) and doublets (d ¼ 10%). G1 are small-scale datasets with
doublet rate changing from 0 to 0.4. The number of cells and SNVs
are all set to 100 with 5 subclones. G2–G4 are median-scale data-
sets, with m and n set to 500, and 10 subclones by default. The
changing factors are a from 10�5 to 0.4 for G2, b from 0.05 to 0.4
for G3 and c from 0.2 to 0.8 for G4. G5–G7 are large-scale datasets,
by default, with cells and SNVs set to 1000, and the number of sub-
clones set to 10. G5 have changing number of subclones from 10 to

50. G6 change the number of cells and subclones simultaneously,
with m varies from 100 to 5000 and s varies from 5 to 40. G7 have
changing number of SNVs in the range of 100–2000. The detailed
settings are provided in Supplementary Table S1.

We also simulated a group of median sized datasets under FSM,
which consist of 10 replicate datasets. We used the default setting of
median-scale dataset (m: 500, n: 500, s: 10) and added 10% recur-
rent mutations and 20% LOH in addition to the default setting of
technical errors (details refer to Supplementary Note 3).

2.4.2 Real data

We tested RobustClone on four real datasets, including two scSNV
and two scCNV datasets. The scSNV datasets were (i) high-grade
serous ovarian cancer (HGSOC) data (Mcpherson et al., 2016; Roth
et al., 2016) and (ii) essential thrombocythemia (ET) data (Hou
et al., 2012). The scCNV datasets were (i) xenograft breast tumor
data (hereinafter denoted as SA501X3F) (Campbell et al., 2019;
Zahn et al., 2017) and (ii) breast cancer data from 10X Genomics
(https://www.10xgenomics.com/solutions/single-cell-cnv/).

3 Results

3.1 RobustClone recovers GTM with high accuracy and

efficiency on simulation datasets
In order to demonstrate the steps of RobustClone, we generated an
illustrative dataset with 5 subclones, 1000 cells and 300 SNV sites.
The errors in the dataset were set as MR 20%, FPR 15% and FNR
15%, respectively. RobustClone can recover the true GTM with
high accuracy and its inferred subclonal tree is highly consistent
with the simulated topology (see details in Supplementary Note 6
and Fig. S1).

In more systematic evaluations, we applied RobustClone, to-
gether with state-of-the-art methods (e.g. BEAM, SCG, SiFit, SCITE
and OncoNEM), on 350 simulated datasets with various settings
under the ISM (Section 2 and Supplementary Table S1 and Notes 3
and 4).

First, we show RobustClone has comparable performance to
other methods when applied to small- or median-scale datasets with
different settings of technical error rates (Supplementary Table S1
and Figs S2 and S3). The small-scale datasets (G1) were designed to
have 5 subclones and 100 cells � 100 SNVs with varying doublet
rates (d: 0–0.4). RobustClone is not sensitive to the change of d. All
methods, but OncoNEM performed comparatively well on recover-
ing GTM with the small-scale datasets (G1 in Supplementary Figs
S2 and S3). On the tree reconstruction distance, OncoNEM has bet-
ter performance than SiFit, although it still has in average larger dis-
tance compared to other methods. RobustClone, SCG, BEAM and
SCITE all have good subclonal tree reconstruction performance.

The median-scale datasets have size of 500 cells � 500 SNVs
with 10 subclones. Overall, RobustClone is comparable in perform-
ance to BEAM, SCITE and SCG, under varying FPR (a: 10�5–0.4),
FNR (b: 0.05–0.4) and MR (c: 0.2–0.8). As OncoNEM failed in
computation on these median sized data, we have excluded it in the
following comparisons. Among the rest of methods, SiFit results in
explicitly higher error rate and tree reconstruction distance as com-
pared to the other four. RobustClone performed best in imputation
of MBs under most error settings, except for in the situations of ex-
tremely high FP and FN errors (G2–G4 in Supplementary Figs S2
and S3). In fact, only SCITE has relatively robust performance on
simulations with extreme rates of FP and FN. Noted that, however,
the FPR and FNR were given as known parameters when applying
SCITE. Also, the simulated data were generated under ISM, which
may be beneficial for methods, such as SCITE, that have model-
based design specially for ISM. Nevertheless, methods, such as
RobustClone and BEAM, that do not rely on ISM still have better
control of error rate under median scale and low FPR and FNR
(Supplementary Figs S2 and S3).

Next, we show the scalability and efficiency of RobustClone on
large-scale datasets. SiFit has significantly worse outputs in both
correction of errors and imputation of missing values on these
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large-scale datasets among all applied methods (Supplementary Figs
S4 and S5). RobustClone outperformed other methods in general
(Fig. 2A top row), especially in imputation of MBs (Fig. 2A, second
row). SCG, BEAM and SCITE also performed considerably good
overall (Fig. 2A and Supplementary Figs S4 and S5). Datasets in G5
are 1000 cells � 1000 SNVs with the number of subclones varying
from 10 to 50. RobustClone, SCG and BEAM all have elevated error
rate in the output GTM when increasing the number of subclones.
RobustClone and SCITE are less sensitive to the change of the num-
ber of subclones. Though SCITE seems to be more robust,
RobustClone has much better performance when less subclones pre-
sent (e.g. s < 30) and is only slightly higher in output error rate
when more subclones present (e.g. s > 30) (Fig. 2A). When we
change the number of cells in the input (m: 100–5000) coupled with
changing number of subclones (s: 5–40), while fixing the number of
SNVs to 1000, RobustClone and SCITE are less affected by the
changes (G6 in Fig. 2A and Supplementary Figs S4 and S5). The out-
put error rate of BEAM seems to be influenced by the increment in
both the number of cells and the number of subclones, which results
in sharp elevation in cases of 2000 cells (30 subclones) and 5000
cells (40 subclones). Interestingly, only in the cases of 100 cells did
SiFit have comparable results to other methods, where its overall
output error rates are smaller than SCG and SCITE (Supplementary
Fig. S4). When we fix the number of cells to 1000 and increase the
number of SNVs from 100 up to 5000, RobustClone has the best
performance in all but the 100 SNVs scenario (G7 in Fig. 2A and
Supplementary Fig. S4). The performance of BEAM is also

outstanding with 500 or more SNVs. Both RobustClone and BEAM
have decreased error output following the increment of SNVs. SCG
and SCITE, on the other hand, have increased their output error
rates as the number of SNVs increases.

Beside better performance on the large-scale datasets,
RobustClone also has tremendous advantage on computational effi-
ciency (Fig. 2B and C). RobustClone is the most efficient algorithm,
that only takes 38 s for calculation of 5000 cells and takes 14 s for
calculation of 2000 SNVs. SCG is the second efficient algorithm, it
takes 30 172 s to deal with 5000 cells and 2016 s for calculation of
2000 SNVs. SiFit and BEAM are also time consuming when there is
a large number of cells or SNVs in the data. The computational
times of SCITE grow exponentially with the increment of cells or
SNVs.

In addition to simulations conducted under ISM, we also simu-
lated 10 sets of data (m � n:500 � 500) with recurrent mutation
and LOH events (Section 2 and Supplementary Note 3).
RobustClone is a model-free method, and it significantly outper-
forms other methods (Fig. 2D). BEAM is also not restricted to ISM,
it ranked second in overall genotype correction, where it has better
performance in correcting FP/FN and comparable power in imput-
ation of missing as compared to SCG. However, it has the worst tree
reconstruction error, which possibly due to its default setting of
using maximum parsimony for tree reconstruction. SCITE and SCG
are designed under ISM, which as a result, they have less power in
correction of FP/FN. SCITE also underperformed in imputation of
MBs and tree reconstruction. Noted that, although SiFit is
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applicable to FSM by design, its overall error is still very high under
these median size datasets, thus, we excluded its results.

3.2 RobustClone works robustly on real data with high

MR
We applied RobustClone to a set of real scSNV data with high MR
(Hou et al., 2012). The single-cell exome-sequencing data from a
sample of JAK2-negative myeloproliferative neoplasm (ET) contains
58 single cells (Hou et al., 2012) with 712 somatic single nucleotide
variants. We applied the binarized GTM preprocessed in Ross and
Markowetz (2016) as the raw input for RobustClone. The MR of
this dataset reaches 58% (Supplementary Fig. S6A). The
RobustClone algorithm recovered the GTM by imputation of miss-
ing entries and correction of erroneous entries (Supplementary Fig.
S6B). The 58 tumor cells were then clustered by RobustClone into 3
subclones, containing 25, 19 and 14 cells, respectively
(Supplementary Fig. S6B). With subclone3 identified as the root,
RobustClone found an MST in linear topology that connected all
three subclones (Supplementary Fig. S6C). This result is consistent
with the previous findings in Hou et al. (2012), Ross and
Markowetz (2016) and Jahn et al. (2016).

In addition to scSNV data, RobustClone can also be used to de-
tect copy-number heterogeneity and identify clones with scCNV
data. To demonstrate this, we applied RobustClone on copy-number
profiles of cells from the passages of a patient-derived primary
triple-negative breast cancer xenograft (SA501X3F data), which
contains 260 cells and 20 651 genomic bins of copy-number states
(Supplementary Fig. S7A). RobustClone recovered a GTM with cells
clustered into two subclones, where one subclone consisted of 214
cells (denoted as subcloneA), and the other consisted of 46 cells
(denoted as subcloneB) (Supplementary Fig. S7B). The copy-number
profiles of the two subclones are shown in Supplementary Figure
S7C. It can be seen that the difference in copy numbers between
subcloneA and subcloneB is mainly presented on the X chromosome
(Supplementary Fig. S7B and C). SubcloneA is completely consistent
with the major subclone identified in Zahn et al. (2017), Rashid
et al. (2019) and Campbell et al. (2019). If we take into account, the
high noise in the data together with the small size of subcloneB and
then tune parameter k to panelize more on the sparsity of the error
entries (E in Section 2.1), we can identify an extra subclone separate
from original subcloneB (Supplementary Fig. S8), which is consist-
ent with the clonal subpopulations identified in Zahn et al. (2017).
However, since Zahn et al. (2017) did not explicitly correct for noise
in the GTM before clonal identification, the two derived subpopula-
tions from subcloneB had much uncertainty (Campbell et al., 2019).
We believe that the two subclones resulted from the default setting
of RobustClone are more robust.

In order to further assess the robustness of RobustClone on the
SA501X3F dataset, we randomly performed a 30% dropout of
entries in the original GTM (Supplementary Fig. S9A) and reana-
lyzed it. RobustClone still identified two subclones, and the copy-
number profile of cells in different subclones was consistent with the
result in Supplementary Figure S7B (Supplementary Fig. S9B). We
continued to increase the dropout rate to 50% (Supplementary Fig.
S9C). RobustClone found 4 subclones containing 213, 45, 1 and 1
cells, respectively (Supplementary Fig. S9D). The two extra sub-
clones each contain one cell only, which is separate from one of the
original major subclones.

These results indicate that RobustClone is highly robust for
scSNV and scCNV data with high missing entries.

3.3 Recovering scSNV genotype and inferring subclonal

tree of HGSOC
We performed RobustClone on a set of HGSOC data (Mcpherson
et al., 2016; Roth et al., 2016). The original data matrix contains
420 cells and 43 selected SNV sites with 10.7% missing entries
(Fig. 3A). RobustClone efficiently recovered the cellular GTM by
imputing the missing values and correcting noisy entries in the
observed data (Fig. 3B). Based on the corrected GTM, RobustClone
identified five subclones. We labeled them subclone1–subclone5,

according to their sizes, consisting of 122, 81, 81, 69 and 67 cells,
respectively (Fig. 3C). As subclone4 had the minimum number of
mutations, it was assigned as the root subclone. An MST connecting
all five subclones was then constructed by RobustClone based on
pairwise subclonal distance (Fig. 3C). The newly arisen mutations of
each subclone, following the topology of MST, could thus be identi-
fied (Supplementary Fig. S10A).

To better understand the composition and the relationship
among subclones, we divided the SNV sites into five major blocks.
Only subclone4 had some mutations in block5 where site TP53
mainly presented in heterozygous genotype. The mutations in
block5 were carried through all subsequent subclones. These sub-
clones had a high rate of homozygous TP53 mutant alleles, which is
a strong indicator of cancer (Sun et al., 2018). Subclone3 descended
from subclone4 and accumulated sparse mutations in all blocks ex-
cept block1. The mutations in block2 and block4 define the diver-
gence of subclone1 and subclone2 from subclone3. The smallest of
the five subclones, subclone5, which carried more mutations in
block3, was derived from subclone1.

We compared the subclones identified by RobustClone to the re-
sult of SCG, which identified six subclones (clusters) based on the
same HGSOC data (Mcpherson et al., 2016; Roth et al., 2016).
SCG cluster0 mainly consists of cells in subclone2 and subclone3.
The cells in SCG clusters 1, 2, 3 and 5 are mainly distributed in sub-
clone1 and subclone5 (Fig. 3D). Subclone4 contained all cells in
SCG cluster4, which was interpreted to be normal cells.
Interestingly, heterozygous and/or even homozygous mutations
were recovered by SCG in SNV sites corresponding to block1, but
only in cluster4. These precancerous mutations were expected to be-
come ‘public’, or at least be abundant, in subsequent subclones
(Opasic et al., 2019; Williams et al., 2016). In comparison, the re-
covery of GTM by RobustClone with no mutations in block1 in all
cells seems to be more reasonable. In addition to the spanning tree
of subclones, the subclonal genotypes and/or the corrected GTM
could also be used to directly reconstruct the subclonal and/or cellu-
lar phylogenies by applying any readily available off-the-shelf meth-
ods in classic phylogenetics (Supplementary Fig. S10B and C)
(Felsenstein, 2004).

3.4 Revealing the spatial heterogeneity of breast cancer

with multi-section large-scale scCNV dataset
We applied RobustClone to large-scale breast cancer scCNV data
from 10X Genomics. The frozen breast tissues were from three
negative ductal carcinoma in situ specimens, which were divided
into five spatially consecutive parts, denoted as Sections from A to E
(Fig. 4A). The raw scCNV-sequencing data were preprocessed by
Cell Ranger pipeline, resulting in a 9050 � 55 572 GTM, which
included 2061, 2046, 1448, 1665 and 1830 cells from Sections A to
E, respectively. Each cell was characterized by the ploidy states of
55 572 20-kb bins over 7 chromosomes, which covered chr3, chr4,
chr5, chr6, chr7, chr8 and chr10, respectively.

RobustClone first recovered a low-rank scCNV GTM and then
identified 6 subclones with 4234, 1808, 1647, 821, 308 and 232
cells, respectively (Fig. 4C). The copy-number profile (Fig. 4B) of
each subclone was obtained by taking the median copy numbers of
each bin for cells within the same subclone. As the copy-number
profile of subclone1 was consistently diploid (Fig. 4B), it was pre-
sumed to consist of normal cells and was, therefore, assigned as the
root. RobustClone then found the MST of subclones (Fig. 4C). We
used red boxes in Figure 4B to highlight the changes between the
copy-number profiles of each subclone and its parent. Subclone4
diverged from subclone1 and had a gain in copy number in nearly
all seven chromosomes where chromosomes 5 and 7 changed from
diploid to tetraploid and other chromosomes changed to triploid.
Subclone6 also derived from subclone1 with copy number loss in
chr6 and 10. Subclone4 further differentiated into two major sub-
clones: subclone2, which changed from triploid to tetraploid on
chr4 and 8; subclone3, which gained one more ploidy, mainly on
chr3, 6 and 10. Subclone5 gained further copy numbers on all chro-
mosomes, except chr4, on the basis of subclone2.

3304 Z.Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3299/5803072 by guest on 08 April 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa172#supplementary-data


The subclonal composition of the five spatial sections is shown
in Figure 4D. Section A is dominated by normal cells of subclone1.
Subclone2 occupies the largest proportion of subclones apart from
normal cells (subclone1) in the middle sections B, C and D. In con-
trast, Section E is governed by subclone3. These results reveal the
great spatial heterogeneity within tumor.

4 Discussion

In this study, we proposed RobustClone, a tool for the robust recov-
ery of noisy scSNV and scCNV data based on the RPCA and
extended RPCA. RobustClone is a model-free approach, which
achieves high accuracy in the imputation of MBs and correction of
FPs and FNs.

Understanding intratumoral heterogeneity and inferring of clo-
nal evolution have long been the subjects of research interests
(Schwartz and Schaffer, 2017). Under the error-prone single-cell
DNA data, two general ideas can be adopted to infer the relation-
ship of tumor cells or subclones. One is jointly modeling errors and
subclonal phylogeny under a Bayesian or likelihood framework. The
other is to directly correct the errors in the original single-cell GTM
and then construct a subclonal tree with the recovered GTM.
BEAM, SCITE and SiFit belong to the first kind, they have good per-
formance when cell numbers or SNV sites are not so large.

RobustClone and SCG belong to the latter type. They both exhibit
computational efficiency in large dataset, and they may also utilize
the state-of-the-art methods in molecular phylogenetics for subclo-
nal tree reconstruction.

RobustClone constructs the subclonal tree by clustering the cells
into subclones using Louvain–Jaccard method and then inferring the
MST of the subclones. The MST-based approach for constructing
subclonal tree has also been adopted by early tumor studies (Gawad
et al., 2014; Ross and Markowetz, 2016; Yuan et al., 2015).
Compared with classical phylogeny, which depicts hierarchical rela-
tions of cells, MST characterizes the genealogical relationship of
tumor clones and explicitly reflects the progression of subclones. We
show that the MST by RobustClone matches the phylogeny well in
Supplementary Figure S10. It is worth noting that in some cases, ex-
tant subclones as well as their common ancestors are partially
observed or incompletely sampled, which pose challenges to both
MST- and phylogeny-based methods. OncoNEM has tried to resolve
this problem by inferring unobserved populations that can improve
the likelihood of the MST (Ross and Markowetz, 2016). However,
its application is limited to small sample size, where for large sample
size, its searching algorithm will become too computationally expen-
sive (Ross and Markowetz, 2016). On the other hand, large sample
size may greatly reduce the possibility of missing clones. In this
study, we mainly focus on recovering the genotypes of cells/clones/
subclones from SCS data with high accuracy, especially for large
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data size, and users of RobustClone can choose whether to construct
MST and/or phylogenetic tree according to their preferences.

Beside point mutation events, which generate SNVs, CNV events
also happen commonly in tumors. Unlike other methods that apply
only to one type of data, RobustClone can be performed on both
scSNV and scCNV data. The application of real data in both cases
demonstrated that RobustClone has considerable power in recover-
ing the genotypes of single cells and/or clones, as well as reconstruct-
ing cell and/or clone trees. Noted that, the current RobustClone
works solely on either scSNV or scCNV, but cannot take both data
types together. Our future work will put effort on jointly correcting
for errors in scSNV and scCNV together, to gain more accurate in-
formation for the inference of cancer evolution.
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