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Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative
symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations.
In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations
of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and
geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most
dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed
that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont commu-
nities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits
from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and
coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend
further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will
improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
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Introduction

Aphids are well known for their symbiotic associations with
bacteria. Almost all aphid species harbor the primary endo-
symbiont Buchnera aphidicola, which inhabits specialized
bacteriocytes and provides aphids with important nutrients

for their growth and reproduction [1–4]. Buchnera is strictly
maternally inherited [5, 6] and has undergone parallel diver-
sification with its aphid hosts [7–14].

Aphids also host multiple secondary (or facultative) bac-
terial symbionts that are generally not essential for their sur-
vival or reproduction. Some are commonly studied, such as
Arsenophonus, Fukatsuia symbiotica, Hamiltonella defensa,
Regiella insecticola, Rickettsiella viridis, and Serratia
symbiotica from the Gammaproteobacteria; Rickettsia and
Wolbachia from the Alphaproteobacteria; and Spiroplasma
from the Mollicutes [15–21]. These secondary symbionts
reside in bacteriocytes, sheath cells, or hemocoel [22] and
are transmitted maternally and horizontally [18, 23, 24].
They have environmentally dependent effects on host aphids,
including increasing heat tolerance [25–29], protecting
against parasitic wasps [30–34] and fungal pathogens [29,
35–37], influencing aphid fitness on host plants [38–40],
modifying body color [41], and affecting aphid reproduction
[42, 43]. More details are reviewed in Oliver et al. [44],
Zytynska and Weisser [45], and Guo et al. [46]. In addition,
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several facultative symbionts seem to have established co-
obligate associations along with Buchnera in certain aphid
species, such as Serratia symbiotica, Erwinia haradaeae,
Fukatsuia symbiotica, Hamiltonella defensa, and Sodalis in
some Lachninae species [21, 47–51] and Wolbachia in
Pentalonia nigronervosa [52, 53].

The associations between microbial symbionts and
aphids are quite different in different aphid species.
Symbionts carried by one aphid species also often vary
across populations. There seems to be a widespread pattern
in polyphagous aphids that the populations feeding on dif-
ferent host plants differ in their symbiont communities
[54–56]. Most studies have focused on the pea aphid
Acyrthosiphon pisum, which consists of at least eleven bio-
types adapted to specific host plants [57]. Facultative sym-
bionts in the pea aphid exhibit large variation across plant-
adapted populations in terms of composition and preva-
lence [35, 54, 58–61]. Links between particular symbionts
and plants have been observed, such as associations be-
tween Hamiltonella defensa and alfalfa and Regiella
insecticola and clover. A nonrandom distribution of bacte-
rial symbionts across host plants has also been reported in
other polyphagous aphid species such as Aphis craccivora
[55, 62] and the oligophagous aphids Phylloxera notabilis
[63] and Aphis citricidus [64]. Nevertheless, several studies
have highlighted the role of geography in structuring the
community of aphids’ bacterial partners. Tsuchida et al.
[65] revealed characteristic geographical distribution pat-
terns of secondary symbionts that infected Acyrthosiphon
pisum in Japan, particularly for Regiella. Jones et al. [66]
found that the symbiont communities of Aphis gossypii and
Pentalonia caladii varied across aphid populations from
different Hawaiian islands. Some studies also indicated cor-
relations between aphid symbionts and other factors, in-
cluding developmental stage of aphids [67, 68], rearing
condition [69], plant species richness [70], and season [71].

The cotton aphid, Aphis gossypiiGlover, is a cosmopolitan
insect pest causing serious economic losses in agriculture. It
feeds on many important crops, including cotton, cucurbits,
citrus, eggplant, peppers, potato, and flowering ornamental
plants such as Hibiscus [72]. Several studies have been con-
ducted on bacterial communities. Najar-Rodríguez et al. [73]
and Jones et al. [66] investigated the microbial diversity of
natural aphid populations from Japan and Australia and from
Hawaii, respectively, and highlighted the effect of geography
on bacterial profiles. Zhao et al. [74] also found distinct bac-
terial community structures from different geographic popu-
lations feeding on Bt cotton in northern China. A. gossypii is
currently controlled primarily by insecticides, which have
been reported to influence the bacterial communities associat-
ed with aphids [75, 76]. In addition, by utilizing quantitative
PCR, Ayoubi et al. [77] uncovered development-associated
dynamics in the abundance of symbionts within A. gossypii.

Although geography has been proposed to have a role
in structuring the bacterial communities of A. gossypii,
samples used in previous studies were restricted to a few
plants. A detailed and deep exploration of the microbiota
in natural populations of A. gossypii is still lacking. In this
study, using Illumina sequencing of 16S rRNA gene, we
characterized the microbial communities of A. gossypii
collected from diverse plants and different regions in
China, assessed differences in bacterial community ac-
cording to host plant and geography, and discussed the
interactions between symbionts.

Material and Methods

Sample Collection and DNA Extraction

A total of 110 samples of Aphis gossypii feeding on plants
belonging to 25 families were collected from 23 regions of
China (Table S1). Specimens from the same colony were pre-
served in 75% and 100% ethanol for making voucher slides
and DNA extraction, respectively. The slide-mounted speci-
mens were identified based on the external morphology. All
voucher specimens and samples were deposited in the
National Zoological Museum of China, Institute of Zoology,
Chinese Academy of Sciences, Beijing, China.

A single adult was chosen from each sample for DNA
extraction. To remove microbial contaminants from the
body surface, each aphid individual was washed with 70%
ethanol for 5 min and then rinsed with sterile ultrapure
water once for 5 min and four times for 1 min. DNA was
extracted from the whole body of a single individual using
DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany)
following the manufacturer’s protocol. A blank sample of
sterile ultrapure water was also processed through the same
extraction protocol to serve as a negative control during the
DNA extraction. The standard cytochrome oxidase subunit
I (COI) barcodes were amplified by universal primers
(LCO1490: 5′-GGTCAACAAATCATAAAGATATTGG-
3 ′ ; HCO2198: 5 ′-TAAACTTCAGGGTGACCAAA
AAATCA-3′) [78] to test the quality of DNA extracts, to
verify the aphid species identification, and to detect con-
tamination from parasitoid wasps.

PCR Amplification, Library Preparation,
and Sequencing

DNAwas amplified using the universal primers of the V3–V4
region of 16S rRNA gene (338F: 5′-ACTCCTACGGGAGG
CAGCA-3′; 806R: 5′-GGACTACHVGGGTWTCTAAT-3′).
The first polymerase chain reaction (PCR) was carried out in
a 50-μL volume containing 1.5 μL (10 μM) of each primer,
0.4 U Q5 High-Fidelity DNA Polymerase (New England
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Biolabs, Ipswich, MA, USA), 10 μL 5× Q5 Reaction Buffer
(New England Biolabs), 10 μL 5× Q5 High GC Enhancer
(New England Biolabs), 1 μL dNTPs (New England
Biolabs), and 40–60 ng DNA extract. The reaction conditions
were as follows: initial denaturation at 95 °C for 5 min,
followed by 15 cycles of 95 °C for 1 min, 50 °C for 1 min,
72 °C for 1 min, and final elongation at 72 °C for 7 min. The
PCR products were purified using VAHTS™ DNA Clean
Beads (Vazyme Biotech, Nanjing, China). In the next step,
10 μL of the purified product was ligated to adapter and sam-
ple barcode in a 40-μL volume containing 1 μL (10 μM) of
each fusion primer and 20 μL of 2× Phusion High-Fidelity
PCR Master Mix (New England Biolabs). The second PCR
conditions were as follows: 98 °C for 30 s, 10 cycles of 98 °C
for 10 s, 65 °C for 30 s, and 72 °C for 30 s, followed by a final
extension at 72 °C for 5 min. Negative amplification controls
(sterile ultrapure water) were also included in all PCR reac-
tions. The final PCR products were recovered using 1.8%
agarose gel electrophoresis, purified with VAHTS™ DNA
Clean Beads (Vazyme Biotech) and then quantified by
NanoDrop 2000 (Thermo Scientific, Wilmington, DE,
USA). All positive PCR products were mixed at a mass ratio
of 1:1. Finally, the library pool was submitted to an Illumina
HiSeq 2500 platform (Illumina, San Diego, CA, USA) for
paired-end sequencing. The raw reads have been deposited
in the NCBI Sequence Read Archive (SRA) database under
BioProject accession number PRJNA543947.

Sequence Processing and Analyses

Paired-end reads were assembled using FLASH v1.2.11
[79]. The merged tags with an average quality score
lower than 20 in a 50-bp sliding window were trimmed
using Trimmomatic v0.33 [80]. The remaining tags
shorter than 300 bp were also removed. High-quality
clean tags were then obtained after removing chimeras
with UCHIME v8.1 [81]. The denoised sequences were
clustered into operational taxonomic units (OTUs) at
97% sequence similarity by the UCLUST module from
QIIME [82]. Taxonomy was assigned to all OTUs by
searching against the Silva databases [83] using the
RDP classifier within QIIME [84]. The OTUs were then
filtered with a threshold value of 0.005% of all se-
quences [85], except for the OTUs that could be classi-
fied. Finally, an OTU table containing the number of
sequences per sample and taxonomic information was
generated.

Statistical Analyses

Alpha diversity indices (i.e., Shannon and Simpson diver-
sity indices) for each sample were calculated using the
diversity function in the R package vegan [86]. The relative

abundance of each bacterial genus was estimated by nor-
malizing the number of sequences assigned to each genus
against the total number of sequences obtained for a given
sample using the decostand function of vegan. To better
investigate the symbiont and secondary symbiont commu-
nities, all OTUs assigned to the reported symbionts of
aphids were screened out from the OTU table, and the rel-
ative abundance of each symbiont was calculated.

All samples of A. gossypii were grouped according to
geographic region and host plant (Table S2). First, we com-
pared the alpha diversity indices of symbiont communities
from different groups. Shannon and Simpson diversity in-
dices for each group (sample size ≥ 3) were calculated with
vegan. The alpha diversity data were found to deviate from
normality (P < 0.05, Shapiro–Wilk test); therefore, we per-
formed the non-parametric Kruskal–Wallis test to check for
significant differences across all groups and conducted the
non-parametric Wilcoxon tests for pairwise group
comparisons.

Next, we investigated the patterns of beta diversity to
address the relative importance of geography and host plant
on symbiont and secondary symbiont communities. Beta
diversity, i.e., the variation of symbiont community compo-
sition among differently grouped samples, was quantified
using Bray–Curtis dissimilarity which considered the
presence/absence and relative abundance of the individual
symbiont. The Bray–Curtis distance was calculated be-
tween each pair of samples using the vegdist function in
vegan. In the analyses of symbiont community, to reduce
the influence of the most abundant Buchnera, the relative
abundance data were logarithmically transformed with the
decostand function of vegan. For the grouping scheme of
geographic region, we assessed variation in community
composition across all 23 groups, across ten groups with a
sample size ≥ 3 (Zhejiang 1, 2, and 3 were treated as one
group), and across three groups colonizing Rhamnaceae
(sample size ≥ 3) (Beijing, Heilongjiang, and Liaoning 2).
For the grouping scheme of host plant, we assessed varia-
tion in community composition among all 25 groups,
among eleven groups with a sample size ≥ 3, among six
groups with a sample size ≥ 5, and among eight groups from
Beijing (sample size ≥ 3) (Asteraceae, Buxaceae,
Crassulaceae, Cucurbitaceae, Lamiaceae, Malvaceae,
Rhamnaceae, and Verbenaceae).

Principal component analysis (PCA) was firstly per-
formed on the relative abundance matrix using the prcomp
function in the R package stats to visualize variation among
different groups in symbiont and secondary symbiont com-
munity compositions. PCA reduces the dimension of multi-
variate data and interprets such data diagrammatically. The
resulting ordination was plotted with the R package ggbiplot
[87]. Then, we used unconstrained and constrained ordina-
tion methods to visualize the Bray–Curtis dissimilarity. For
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the unconstrained ordination approach, we performed non-
metric multidimensional scaling (NMDS) on the Bray–
Curtis distance matrix using the metaMDS function in vegan
and presented two-dimensional plots by the R package
ggplot2 [88]. NMDS is found to always produce better or-
dinations than PCA [89]. For the constrained ordination ap-
proach, constrained principal coordinate analysis (cPCoA)
was performed on the Bray–Curtis distance matrix using
capscale and anova.cca functions in vegan and the resulting
ordination was visualized by ggplot2. These ordination tech-
niques are useful in representing community variation in
response to environmental factors, such as geography and
host plant in this study. In an ordination, samples that are
close are more similar to one another than those that are far
apart.

Based on the Bray–Curtis distance matrices, differ-
ences in symbiont and secondary symbiont community
structures were also statistically analyzed with analysis
of similarities (ANOSIM) and permutational multivariate
analysis of variance (PERMANOVA). These two analyses
are both resemblance-based permutation methods widely
used in ecology and PERMANOVA is generally more
powerful than ANOSIM to detect changes in community
composition [90]. ANOSIM and PERMANOVA were ap-
plied using the anosim function and adonis function in
vegan, respectively, and P values were obtained using
999 permutations. To further identify which symbionts
were driving the differences in secondary symbiont com-
munity, we carried out the analysis of variance (ANOVA)
tests in STAMP v2.1.3 [91] based on the relative abun-
dances of each secondary symbiont from groups with a
sample size ≥ 3. Pairwise group comparisons of the aver-
age relative abundances were then conducted using the
post hoc Scheffé test, where the Bonferroni-adjusted P
values were used to control the false discovery rate.

Furthermore, to test the effect of geographic distances
among sampling sites in structuring the symbiont and
secondary symbiont communities, the Pearson correla-
tion coefficient between geographic distance matrix
and Bray–Curtis distance matrix was calculated using
Mantel test in vegan. The geographic distance matrix
was generated using the Geographic Distance Matrix
Generator v1.2.3 [92]. Mantel test allows to look for
the correlation between two distance matrices. The null
hypothesis that inter-point distances in these two matri-
ces are not correlated was tested through a permutation
procedure.

Finally, to explore potential interactions among differ-
ent symbionts associated with A. gossypii, the Spearman
correlation coefficients (ρ) between symbionts were cal-
culated based on their relative abundances using the cor
function in stats and were visualized in a heatmap with
the R package corrplot [93].

Results

The Bacterial Diversity of Aphis gossypii

Overall Bacterial Diversity After quality control, we obtained
3,867,639 16S rRNA gene sequences (35,160 reads per sam-
ple). A total of 1524 OTUs were identified at 97% similarity
and were assigned into 39 phyla (Proteobacteria, 96.73% of
total sequences), 104 classes (Gammaproteobacteria,
94.96%), 180 orders (Enterobacteriales, 93.48%), 310 fami-
lies (Enterobacteriaceae, 93.48%), and 630 genera (Table S3).
The bacterial community of A. gossypiiwas dominated by the
primary endosymbiont Buchnera aphidicola (average relative
abundance across all samples 91.79%), followed by the sec-
ondary symbiont Arsenophonus (1.11%) and the bacteria
Acinetobacter (0.99%) (Fig. 1a, Table S3).

Symbiont Diversity The alpha diversity of the symbiont
community was very low (mean Shannon index = 0.063,
mean Simpson index = 0.969) (Table S4). A total of eight
aphid symbionts were detected in the cotton aphid. All
samples harbored the primary endosymbiont Buchnera
aphidicola. Along with Arsenophonus, they were also in-
fected with Rickettsia (average relative abundance across
all samples 0.32%), Serratia symbiotica (0.07%),
Wolbachia (0.04%), Hamiltonella defensa (< 0.005%),
Regiella insecticola (< 0.005%), and Spiroplasma (<
0.005%) (Fig. 1b, Table 1). Within the secondary symbi-
ont community, the most prevalent bacteria were
Arsenophonus (infection frequency 82/110), followed by
Wolbachia (68/110), and Serratia symbiotica (32/110).
Hamiltonel la defensa , Regiel la insect icola , and
Spiroplasma were found to be low in both infection rate
and abundance (Table 1). Many samples (69/110) were
infected by at least two secondary symbionts in various
combinations (Table 2). Co-infection with Arsenophonus
and Wolbachia was the most common type (30/110),
followed by multiple infections with Arsenophonus,
Serratia symbiotica, and Wolbachia (13/110).

Symbiont Communities from Different Geographic
Regions and Host Plants

Comparison of Alpha Diversity No significant difference
was detected among the alpha diversity indices of aphid
symbionts from different geographic regions (P = 0.710
for Shannon index, P = 0.770 for Simpson index,
Kruskal–Wallis test; P = 0.216–0.978 for Shannon index,
P = 0.295–1.000 for Simpson index, Wilcoxon test).
However, the Kruskal–Wallis test revealed statistical dif-
ferences in the populations occupying different host plants
(P = 0.006 < 0.01 for Shannon and Simpson indices). The
symbionts within cotton aphid samples feeding on

Xu S. et al.974



Buxaceae and Cucurbitaceae showed significantly higher
and lower alpha diversities than samples on other plants,
respectively (Buxaceae: P = 0.039 < 0.05 for Shannon in-
dex, P = 0.035 < 0.05 for Simpson index, Wilcoxon test;
Cucurbitaceae: P = 0.002 < 0.01 for Shannon index, P =
0.015 < 0.05 for Simpson index, Wilcoxon test).

Pattern of Beta Diversity In the PCA, NMDS, and cPCoA
analyses, no distinct clustering of symbiont composition for
each geographic population was revealed (figures not shown),
except for the cPCoA ordination of three groups feeding on
Rhamnaceae (sample size ≥ 3), which showed that the

samples from the same geographic region tended to cluster
together and separate from others (Fig. 2a). ANOSIM tests
found no significant differences across geographic regions
(Table 3), whereas PERMANOVA tests detected statistical
differences among 23 geographic populations (R2 = 0.265,
P < 0.05) and across three groups feeding on Rhamnaceae
(≥ 3 samples) (R2 = 0.170, P < 0.05). In the Mantel test, no
significant correlation between Bray–Curtis dissimilarity and
geographic distance could be observed (r = − 0.030, P =
0.681). For the symbiont communities associated with aphid
populations occupying different host plants, although the PCA
and NMDS ordinations did not show significant structuring
patterns (figures not shown), both ANOSIM and
PERMANOVA uncovered a strong effect of host plant on
symbiont composition (P < 0.01, Table 3). Moreover, in the
cPCoA analyses of six groups with a sample size ≥ 5 and eight
groups from Beijing (sample size ≥ 3), the symbiont commu-
nities within aphids colonizing Cucurbitaceae tended to form
a separate cluster (22–34.2% of variance, P = 0.001 < 0.01,
Figs. 2c, e).

Structural Variation in Secondary Symbiont
Communities

Geographical Variation in Community Structure The barplot
of secondary symbiont compositions of different geographic
populations is shown in Fig. 3a. No recognizable clustering
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Fig. 1 Barplots of bacterial communities (a) and secondary symbiont communities (b) associated with Aphis gossypii across all samples

Table 1 Infection prevalence and average relative abundance of
symbionts across all samples of Aphis gossypii

Symbiont Infection frequency Relative abundance (%)

Buchnera aphidicola 110/110 91.79

Arsenophonus 82/110 1.11

Wolbachia 68/110 0.04

Serratia symbiotica 32/110 0.07

Rickettsia 9/110 0.32

Hamiltonella defensa 6/110 < 0.005

Regiella insecticola 4/110 < 0.005

Spiroplasma 2/110 < 0.005
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was observed in the ordination analyses (figures not shown),
except for the cPCoA of three groups feeding on Rhamnaceae
(sample size ≥ 3) (25.3% of variance, P = 0.026 < 0.05,
Fig. 2b). Neither ANOSIM nor PERMANOVA revealed sig-
nificant differences in secondary symbiont community among
geographic populations (Table 3). Mantel test also found no
significant correlation between Bray–Curtis dissimilarity and
geographic distance (r = 0.011, P = 0.413).

Community Variation with Respect to Host Plant PCA did not
exhibit good performance for the secondary symbionts
from aphids exploiting different host plants (figures not
shown). However, in the NMDS and cPCoA analyses of
six groups with a sample size ≥ 5 and cPCoA of eight
groups from Beijing (sample size ≥ 3), the communities
within aphids feeding on Cucurbitaceae were clearly sepa-
rated from other samples (cPCoA 38.6–39.5% of variance,
P = 0.001–0.002 < 0.01, Figs. 2d, f). In addition, both
ANOSIM and PERMANOVA revealed a significant effect
of host plant on the secondary symbiont community
(P < 0.01, Table 3). Among all detected secondary symbi-
onts, the relative abundances of Arsenophonus and
Wolbachia were found to significantly differ across differ-
ent host plant groups (P < 0.01, ANOVA test, Figs. S1a, b).
Arsenophonus was ex t r eme ly dominan t i n the
Acanthaceae, Caprifoliaceae, Polygonaceae, Rosaceae,
and Rutaceae groups (average relative abundances across

samples > 98%, Fig. 3b). However, it showed low abun-
dance in the aphid samples feeding on Cucurbitaceae,
Melastomataceae, and Ulmaceae (< 16%) and was not de-
tected in the groups of Brassicaceae, Clusiaceae, and
Rubiaceae (Fig. 3b). The post hoc Scheffé test also showed
that the average relative abundance of Arsenophonus was
significantly lower in the Cucurbitaceae group (P < 0.05,
Fig. S1c). Wolbachia dominated in the communities from
Brassicaceae, Clusiaceae, Cucurbitaceae, and Rubiaceae
(> 65%, Fig. 3b). Its average relative abundance in the
Cucurbitaceae group was significantly higher when tested
using the post hoc Scheffé test (P < 0.05, Fig. S1d).
However, Wolbachia accounted for much lower propor-
tions (< 5%) in the communities from Acanthaceae,
Asteraceae, Buxaceae, Melastomataceae, Rosaceae, and
Rutaceae and was absent from the Caprifoliaceae and
Polygonaceae groups (Fig. 3b).

The Correlations Between Different Symbionts

The Spearman correlation coefficients between symbionts
were visualized as a heatmap (Fig. 4). Buchnera aphidicola
seemed negatively correlated with secondary symbionts, par-
ticularly Arsenophonus (ρ = − 0.830, P < 0.01) andWolbachia
(ρ = − 0.211, P < 0.05) (Table S5). Both positive and negative
correlations were observed between different secondary
symbionts.

Table 2 Infection pattern of
secondary symbionts within
Aphis gossypii

Infection pattern Secondary symbiont Infection frequency

No infection 6/110

Single infection Arsenophonus 19/110

Wolbachia 11/110

Serratia symbiotica 4/110

Hamiltonella defensa 1/110

Co-infection Arsenophonus–Wolbachia 30/110

Arsenophonus–Serratia 6/110

Serratia–Wolbachia 3/110

Arsenophonus–Rickettsia 2/110

Arsenophonus–Spiroplasma 1/110

Serratia–Rickettsia 1/110

Wolbachia–Rickettsia 1/110

Multiple infections Arsenophonus–Serratia–Wolbachia 13/110

Arsenophonus–Hamiltonella–Wolbachia 3/110

Arsenophonus–Rickettsia–Wolbachia 2/110

Arsenophonus–Hamiltonella–Spiroplasma 1/110

Arsenophonus–Regiella–Serratia 1/110

Arsenophonus–Regiella–Wolbachia 1/110

Serratia–Rickettsia–Wolbachia 1/110

Arsenophonus–Regiella–Serratia–Wolbachia 1/110

Arsenophonus–Hamiltonella–Rickettsia–Serratia–Wolbachia 1/110

Arsenophonus–Regiella–Rickettsia–Serratia–Wolbachia 1/110
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Discussion

Symbiont Diversity of Aphis gossypii

Our study revealed that the A. gossypii microbiota was dom-
inated by a few bacterial taxa. Out of the top ten abundant

genera, three were symbiotic bacteria, namely, Buchnera,
Arsenophonus, and Rickettsia (Table S3). The third most
abundant, Acinetobacter, has been reported in A. gossypii
[73, 75, 76] and is common in insect gut communities [94,
95]. Many other bacteria detected here could be environmen-
tal or transient taxa.
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As expected, Buchnera aphidicola was harbored by all
aphid samples examined. It also showed the highest relative
abundance in all samples. Considering the critical role of
Buchnera in aphid survival and the long-term cospeciation
of these two partners [8], the ubiquity and high abundance
of Buchnera appear quite reasonable. Twelve OTUs belong-
ing to Buchnera were identified. No phylogenetic concor-
dance between Buchnera and their corresponding aphid hosts
was found (data not shown). The presence of multiple phylo-
types may therefore be correlated with mutation accumulation
in the reduced Buchnera genomes, which seems to be caused
by loss of DNA repair genes and fixation of slightly deleteri-
ous mutations through genetic drift [96, 97]. However, for
phylotypes with extremely low abundance, the possibility that
the mutations were artifacts introduced by PCR or sequencing
errors cannot be ruled out.

Seven secondary symbionts were detected in this study,
although their relative abundances were very low.
Spiroplasma, which was not reported in A. gossypii

previously, was identified in our sequencing data.
Spiroplasma had extremely low relative abundance (<
0.005%) in two aphid samples, which may explain why it
was not found before. The defensive symbiont Hamiltonella
defensa was reported to infect all A. gossypii samples exam-
ined by Zhao et al. [74], Ayoubi et al. [77], and Zhang et al.
[76]. However, in our study, it was just carried by six samples
at very low abundance (< 0.005%). Our data showed that
Arsenophonus was the predominant facultative symbiont,
with the highest infection prevalence and abundance. It has
been reported in previous studies of A. gossypii [66, 73–77].
Jousselin et al. [98] surveyed the distribution ofArsenophonus
in aphids and revealed its high prevalence in the genus Aphis.
Our results confirm their conclusion that Arsenophonus is a
major bacterial partner of aphids. Most Arsenophonus in in-
sects, including A. gossypii, was found to be associated with
the lysogenic bacteriophage APSE [99], which is critical for
Hamiltonella to confer protection against parasitoid wasps
[100, 101]. In psyllids, the infection frequency of the APSE-

Table 3 ANOSIM and PERMANOVA results for symbiont and secondary symbiont communities from different groups

Group Symbiont community Secondary symbiont community

ANOSIM (R, P) PERMANOVA (R2, P) ANOSIM (R, P) PERMANOVA (R2, P)

Geographic region All 23 groups 0.053, 0.249 0.265, 0.049 0.040, 0.223 0.256, 0.113

10 groups (sample size ≥3) 0.002, 0.451 0.102, 0.386 −0.006, 0.487 0.132, 0.189

3 groups (on Rhamnaceae, sample size ≥3) 0.091, 0.051 0.170, 0.034 0.010, 0.324 0.099, 0.223

Host plant All 25 groups 0.291, 0.001 0.433, 0.001 0.279, 0.002 0.491, 0.001

11 groups (sample size ≥3) 0.258, 0.001 0.319, 0.001 0.280, 0.001 0.429, 0.001

6 groups (sample size ≥5) 0.239, 0.001 0.300, 0.001 0.281, 0.001 0.451, 0.001

8 groups (from Beijing, sample size ≥3) 0.278, 0.001 0.433, 0.001 0.304, 0.008 0.367, 0.006

Significant P values (P < 0.05) are in italics.
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bearing Arsenophonus has presented a positive correlation
with parasitism, indicating a potential defensive role of
Arsenophonus [102]. Therefore, we hypothesize that
Arsenophonus in A. gossypii may play a similar role in pro-
viding resistance against parasitoids, especially in the case of
rare Hamiltonella infection. Further experiments are required
to determine the function of Arsenophonus in aphids.

Impact of Geography and Host Plant on Symbiont
Community

Geography has been reported to influence the microbial pro-
files of the Japanese, Australian, Hawaiian, and Chinese pop-
ulations of A. gossypii feeding on a limited number of plant
species [66, 73, 74]. However, in the present study, it contrib-
uted little to the cotton aphid’s symbiont community structure.
No significant differences in symbiont or secondary symbiont
communities over space were detected in the ordination anal-
yses or statistical tests, except for three geographic groups
colonizing the same plant family Rhamnaceae. This result is
consistent with previous studies in which only a few plant
species were included and suggests that when the host plant
is not taken into account (i.e., the same or very few plant
species), geography has an influence on the symbiont compo-
sition of aphids. In addition, Mantel tests detected no signifi-
cant correlation between the geographic distances among
sampling sites and Bray–Curtis dissimilarities of symbiont
or secondary symbiont communities, which suggested negli-
gible effect of spatial distance on the symbiont community
structure.

Compared with the limited impact of geography, the host
plant appeared to have played a greater role in shaping the
symbiotic bacterial community associated with A. gossypii.
The alpha diversity of symbionts was found to be significantly
different across aphid populations exploiting different plants.
ANOSIM and PERMANOVA tests also revealed a strong
effect of the host plant on both symbiont and secondary sym-
biont communities. These findings are consistent with previ-
ous studies that showed that the populations of polyphagous
aphids colonizing different plants tended to harbor different
symbiont communities (e.g., Acyrthosiphon pisum, Aphis
craccivora, Aphis fabae, and Macrosiphum euphorbiae)
[54–56].

It is worth noting that the Cucurbitaceae-feeding cotton
aphids hosted unique symbiont communities. They showed
lower alpha diversity and were clustered together and separat-
ed from other samples in some ordination analyses. The post
hoc Scheffé tests revealed significantly low-abundance
Arsenophonus but high-abundance Wolbachia within the
Cucurbitaceae-feeding populations. Correlations between cer-
tain endosymbionts and host plants have been repeatedly re-
ported in polyphagous aphids, especially in the extensively
studied pea aphid Acyrthosiphon pisum [35, 54, 55, 59, 60,
62]. For instance, the clover-adapted biotype of pea aphid was
found to be associated with Regiella insecticola around the
world [35, 38, 58, 65], and Arsenophonus-bearing locust pop-
ulations were reported in Aphis craccivora [55, 62].
A. gossypii is a typical polyphagous species with a very wide
range of host plants. Genetic differentiation has been found to
occur among its host-associated populations [103–105]. Both
host plant transfer experiments [106, 107] and molecular stud-
ies [104, 105, 108] have confirmed the existence of a
cucurbits-specialized host race in A. gossypii. The special
symbiont communities within cucurbits-feeding populations
support the ecological specialization of A. gossypii on
Cucurbitaceae from the perspective of symbiotic bacteria.
However, it is not clear whether the associated symbionts have
played a substantive role in host plant specialization of
A. gossypii. Some studies suggested that facultative symbionts
had an important influence on the host plant use of aphids
[38–40]; some, however, doubted the direct impact of facul-
tative symbionts on the plant adaptation of aphids [109, 110].
Further works based on a more extensive sampling are needed
to present a comprehensive landscape of microbiota in
Cucurbitaceae-feeding cotton aphids. Assessments of fitness
effects by particular facultative symbionts are also necessary
to elucidate the exact role of endosymbionts in host
specialization.

Symbiont–Symbiont Interactions

We conducted correlation analysis to assess the interactions
between different symbionts. The correlation coefficients

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0
Buc

hn
era

 ap
hid

ico
la

Ham
ilto

ne
lla

 de
fen

sa

Reg
iel

la 
ins

ec
tic

ola

Rick
ett

sia

Serr
ati

a s
ym

bio
tic

a

Spir
op

las
ma

W
olb

ac
hia

Arsenophonus

Buchnera aphidicola

Hamiltonella defensa

Regiella insecticola

Rickettsia

Serratia symbiotica

Spiroplasma

Fig. 4 Heatmap of pairwise Spearman correlation coefficients of
symbionts. Positive correlations are indicated as blue gradients from 0
to 1.0, and negative correlations are indicated as red gradients from 0 to −
1.0. The size of each circle is proportional to the significance level of the
correlation coefficient

The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is... 979



suggested antagonistic interactions between Buchnera
aphidicola and secondary symbionts. In the pea aphid,
Serratia symbiotica and Rickettsia have been reported to sup-
press the population density of Buchnera [111, 112]. Zhang
et al. [76] also found a negative effect of Hamiltonella on the
abundance ofBuchnera inA. gossypii. These findings indicate
competition between the primary and secondary symbionts
for resources and survival niches within the same host aphid.

Multiple infections with secondary symbionts occurred
commonly in our examined cotton aphids. Co-infections are
often unstable [24, 113]. We hypothesize that such a high
proportion of multiple infections may result from frequent
horizontal transfers. A. gossypii is heteroecious holocyclic in
China, alternating between primary host plants such as
Punica, Hibiscus, and Rhamnus and various herbaceous sec-
ondary host plants [114]. The sexual phase [113] and migra-
tions between different plants [115, 116] create opportunities
for horizontal transfer of secondary symbionts among natural
populations ofA. gossypii. Co-infections may bring ecological
benefits for the host aphids. Acyrthosiphon pisum co-infected
with Hamiltonella–Serratia or Hamiltonella–Fukatsuia ex-
hibited greater resistance to parasitoids [31, 32]. However,
Polin et al. [117] reported that the Acyrthosiphon pisum strain
co-infectedwithRickettsiella viridis andHamiltonella defensa
was more exposed to ladybird predation than the singly
Rickettsiella-infected strain. Ayoubi et al. [77] found that the
Hamiltonella–Arsenophonus combination in A. gossypii con-
ferred no resistance against parasitism by Aphidius
matricariae. Therefore, the interactions between facultative
symbionts seem very complicated, either synergistically or
antagonistically, which was also indicated by the positive
and negative Spearman correlation coefficients in our study.

Conclusions

Based on an extensive sampling from different plants and
regions in China, we analyzed the diversity of symbiotic bac-
teria within Aphis gossypii using Illumina sequencing of 16S
rRNA gene. The microbiota of A. gossypii was dominated by
heritable symbionts, among which Buchnera aphidicola and
Arsenophonuswere the predominant symbiont and facultative
symbiont, respectively. The symbiont diversity was found to
vary with the host plant rather than geography, suggesting an
important role of the host plant in shaping the bacterial com-
munity structure. The cucurbits-adapted aphid populations
harbored unique symbiont communities, which provide a
good model to explore the direct or indirect impacts of facul-
tative symbionts on host specialization. Moreover, the inter-
actions between coexisting symbionts within A. gossypiiwere
revealed to be very complicated.
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