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Abstract

Understanding locomotor activity patterns would reveal key information about an animal’s

foraging strategy, energy budget and evolutionary adaptation. We studied the locomotor

activity patterns of the takin (Budorcas taxicolor) in a temperate mountain region in China

using GPS radio-collar technology from 1 July 2014 to 30 June 2015. Our research showed

that takin had a bimodal crepuscular locomotor activity pattern, with an especially obvious

movement peak at dusk. The takins showed significant seasonal differences in their move-

ment rates, with the lowest movement rate in winter. The animals also showed sexual differ-

ences in their movement rates. In spring, the female movement rate was significantly higher

than that of males during daytime, while during nighttime the movement rate of males was

higher than that of females. The male movement rate was significantly higher than that of

females in summer. The movement rate of the takins were correlated to microenvironment

temperature and normalized difference vegetation index (NDVI) in each season. These find-

ings suggest that takin could adjust locomotor activity levels adapt to reproductive require-

ments, temperature variation and forage variability.

Introduction

Locomotor activity patterns of animals can be affected by various factors, such as ambient tem-

perature and seasonal change [1–4], forage quantity and quality [2, 5], and sex and reproductive

status [6–8]. Therefore, investigating locomotor activity patterns could reveal key information

about an animal’s foraging strategy, energy budgets and evolutionary adaptation [9].

In temperate mountain regions, the daily photoperiod and thermoperiod vary with the sea-

son, which can influence variation in the physiology and behavior of herbivores [10–12]. High

temperatures can cause herbivores to reduce activity during the daytime and increase crepus-

cular activity [1, 13]. In general, herbivores can choose their resting and sheltering locations to

experience more favorable temperature regimes, to avoid overheating [14], and to reduce heat

loss [15, 16]. Thus, daily activity patterns of herbivores can demonstrate a clear seasonal varia-

tion, often with the lowest activity levels in winter [2, 17].

The takin (Budorcas taxicolor) is a large ungulate that inhabits temperate mountain regions

and is considered to be a vulnerable species by the International Union for Conservation of

Nature (IUCN) [18]. The animal is sexually dimorphic, and adult males are about 40% heavier
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than adult females [19]. This usually results in sexual differences in habitat and space use

among takins [20, 21], which is a pattern seen in many other ungulate species [22]. Some

researchers have hypothesized that sexual segregation among ungulates is the result of sexual

differences in activity patterns [23]. Captive Sichuan takins (B. t. tibetana) show seasonal and

sexual differences in activity budgets [24].

Because takins inhabit steep, complex forested alpine and subalpine areas, it is difficult to

explore their activity patterns and time budgets in detail, therefore there is little published infor-

mation on the activity patterns of takins [24–28]. Some studies suggest that the activity peak of

takins is during daytime in spring and summer; however, others show that takins have bimodal

crepuscular activity peaks [25]. Based on camera traps, takins showed three daily activity peri-

ods including midnight, early morning and mid-late afternoon, followed by three inactive peri-

ods in winter and spring [27]. However, previous research on takin activity patterns has had

shortcomings concerning the observation period and study method. The principal advantage of

global positioning system (GPS) radio collars over more traditional methods is the consistent

accrual of large numbers of locations per animal through automated tracking. Thus, GPS radio

collars have become an important wildlife research technology in recent years [29].

We studied the locomotor activity of takins in a temperate mountain region using GPS

radio collar technology. We predicted that (1) takins would show crepuscular locomotor activ-

ity peaks, and (2) seasonal and sexual differences in locomotor activity would be found in

accordance with seasonal variations in the photoperiod and thermoperiod. Additionally, we

predicted that microenvironment temperature and available food resources would be corre-

lated to locomotor activity because of seasonal altitudinal movements [30, 31].

Materials and methods

Study area

The study area is in and around the Foping National Nature Reserve (33˚300–33˚500 N, 107˚

390–107˚580 E), located in the Qinling Mountains, Shaanxi Province, China. Elevation ranges

between 810 m and 2904 m, and the area is characterized by rugged mountains (Fig 1). Based

on the temperature data of the Foping weather station around the study area from 1981 to 2016,

the lowest monthly mean temperature is -2.7˚C in January; the highest monthly mean tempera-

ture is 28.3˚C in July. Based on Zeng et al. [31], June–August is considered summer, Decem-

ber–March winter, with April–May and September–November forming the seasons of spring

and autumn, respectively. The cover types are mainly comprised of subalpine meadow, conifer

forests, mixed conifer-broadleaf forests, deciduous broadleaf forests and shrub [30, 32]. Except

golden takin (B. t. bedfordi), there are many other endangered mammals within the study area,

for instance, giant panda (Ailuropoda melanoleuca), Chinese goral (Naemorhedus goral), serow

(Capricornis sumatraensis), forest musk deer (Moschus berezovskii), Asiatic black bear (Ursus
thibetanus), golden snub-nosed monkey (Rhinopithecus roxellana) and golden cat (Profelis tem-
mincki). The Chinese goral’s and serow’s body size is much smaller than takin’s, and they don’t

compete with takins for food [33]. There are hardly any predators for takins since wild South

China tiger (Pantheral tigris) has been extinct in the study area [34].

Takin data

We monitored ten adult takins (4 males and 6 females) tagged with GPS 7000M collars (Lotek

Wireless Inc., Ontario, Canada). Two animals were caught in 2013 and eight in 2014 (S1

Table). The dart rifle using immobilizing anesthetic was used to capture takins at a distance of

between 10 m and 20 m while the animals were congregated around a feeding site. The Xyla-

zine Hydrochloride Injection (Jilin Huamu Animal Health Product Co., Ltd., Changchun,
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China) was used as immobilizing anesthetic at a dose of 1.3–1.5 ml per 100 kg body mass. The

Suxing Injection (Jilin Huamu Animal Health Product Co., Ltd., Changchun, China) was used

as antidote to reverse the sedation at an equal dose of the anesthetic. An animal capture proto-

col of the study was approved by the Animal Ethics Committee of the Institute of Zoology,

Chinese Academy of Sciences, and the National Forestry Agency of China (Linhuxuzhun #

(2012)1630). The takin capture and collecting GPS data in the study area was permitted by the

Foping national nature reserve administration.

The GPS 7000M collar weighted about 950 g, which was less than 1% of the body mass of

takin. The collars were scheduled to acquire the position every two hours. The data informa-

tion of each GPS position included latitude, longitude, temperature, dilution of precision

(DOP), date and time. We periodically used a handheld command unit (HCU) to download

data from the collars. Three-dimensional locations with a DOP < 10 were regarded as vali-

dated GPS locations while other less accurate locations were removed [35]. In these 10 collars,

only 4 collars had still worked in June 2016; other collars did not work because of battery run-

ning out before June 2016. In order to keep statistical data unified, we used collar data from 1

July 2014 to 30 June 2015. During this period, we collected between 3075–4209 validated GPS

locations for each animal (S1 Table). Using stationary collars, we estimated a location error of

10.73 m [21].

We separated takin movement paths into steps, which were defined as the true travel seg-

ments linking successive 2 h locations [36]. We first calculated the Euclidean distance between

Fig 1. The GPS locations of the 10 golden takins from 1 July 2014 to 30 June 2015, and elevation of the study area (Red points indicated locations of 6

female takins, blue points indicated locations of 4 male takins, digital elevation map data was downloaded from https://earthexplorer.usgs.gov/).

https://doi.org/10.1371/journal.pone.0235464.g001
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successive locations (m). We subsequently calculated the true travel distance corrected using

average change in altitude between successive locations [37]. Finally, we calculated movement

rate by dividing the true travel distance by the time elapsed between them (h). Because move-

ment rate can be influenced by time intervals [38], we used only GPS locations separated by 2

h (S1 Table). Based on Ensing et al. [37], movement rates from GPS successive locations were

suitable as measures for daily locomotor activity in ungulates. Based on Zeng et al. [39], takins

would mostly feed while walking. Therefore, movement rate would indicate feeding activity of

takins.

Period of day

In the study area, the sunrise shifts from 5:39 a.m. in June to 7:54 a.m. in January. Sunset shifts

from 8:00 p.m. in June to 5:40 p.m. in December. We defined ‘daytime’ as the time from sun-

rise to sunset. ‘Nighttime’ was defined as the time between the end of nautical twilight in the

evening and the start of nautical twilight in the morning. Because GPS locations are separated

by a 2 h interval, locations at time t and t + 1 can be classified in different periods of the day.

Thus, we classified steps into diurnal period if two successive GPS locations occurred during

daytime, nocturnal period only if two successive GPS locations occurred during nighttime.

Normalized difference vegetation index (NDVI)

As a browser species, takins forage on various species of plants, including mosses, ferns, herbs,

shrubs and trees [40]. We used the Moderate Resolution Imaging Spectroradiometer

(MODIS) NDVI (https://earthexplorer.usgs.gov/) as a surrogate for food abundance and avail-

ability. We calculated the NDVI value of takin GPS locations with the MODIS MOD13Q1

data (every 16 days at 250-m spatial resolution as a gridded level-3 product in the sinusoidal

projection) using the extraction tools in ArcGIS 10.1 (Environmental System Research Insti-

tute Inc., Redlands, CA, USA). The mean NDVI of each movement step was calculated respec-

tively as the means of its two endpoints NDVI.

Microenvironment temperature

Because the takins inhabit steep, complex forested alpine and subalpine areas, we could not

collect true ambient temperature of GPS locations. The temperature data taken by collars were

mostly affected by the solar radiation, shade and other factors of GPS location microenviron-

ment, although it also affected by the heat radiation of the takin wearing the collar. Therefore,

the temperature of collar recorded could be as a surrogate for microenvironment temperature.

The mean microenvironment temperature of each movement step was calculated respectively

as the means of its two endpoints temperature from GPS collars.

Statistical analysis

We used one-way ANOVA to compare seasonal differences on movement rates during day-

time, nighttime and throughout the day. In order to see which determinants contribute to

movement rate of the takins in each season, we constructed models including the factors (sex,

temperature and NDVI) using the GLMM procedure, random factor being animal individual.

All statistical analyses were performed using R version 3.5.1 [41].

Results

There were apparent bimodal crepuscular movement peaks for the takins in each season (Fig

2). The movement peaks at dusk were especially obvious. The takin movement rates rapidly
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declined after dusk, and they had the slowest movement rates at night in each season (Fig 2).

At dawn, their movement rates rapidly increased (Fig 2). After dawn, their movement rates

also obviously declined. These resulted in an obvious movement peak at dawn (Fig 2).

The movement rate of the takins throughout the day and during daytime showed signifi-

cant seasonal differences (F3, 36 = 13.50, P< 0.01 for whole day; F3, 36 = 9.14, P< 0.01 for day-

time). The lowest movement rate of the takins throughout the day and during daytime was in

winter (Fig 3). The differences in movement rate between winter and other there season were

greater than location error of GPS collars. Although, the movement rate of the takins during

nighttime showed seasonal difference (F3, 36 = 3.15, P< 0.05), the differences on movement

rate between in winter and other there season were much less than location error of GPS col-

lars (Fig 3).

The GLMM models showed that fixed factors (sex, temperature and NDVI) would affect

movement rate of the takins (Table 1). The models also showed that correlations of these fixed

factors were less than 0.65 in each season. In spring, the sexual effect estimate β via diurnal

model showed significant negative effect on movement rate of the takins (Table 1). It indicated

that female diurnal movement rate was significantly higher than that of males in spring. How-

ever, the sexual effect estimate β via nocturnal model showed significant positive effect on

Fig 2. Locomotor activity patterns of 10 takins monitored in the study area during the study period. Dawn and dusk are shaded.

https://doi.org/10.1371/journal.pone.0235464.g002
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movement rate of the takins in spring (Table 1). It indicated that male nocturnal movement

rate was significantly higher than that of females in spring. In summer, the sexual effect esti-

mate β via whole day’s model showed significant positive effect on movement rate of the takins

(Table 1). It indicated that male movement rate was significantly higher than that of females in

summer. In autumn, the sexual effect estimate β via nocturnal model showed significant posi-

tive effect on movement rate of the takins (Table 1). It indicated that male nocturnal move-

ment rate was significantly higher than that of females in autumn. In winter, the sexual effect

estimate β via model showed no effect on movement rate of the takins.

Microenvironment temperature of takin locations changed monthly, with higher tempera-

tures during June to August and lower temperatures during December to February (Fig 4).

The seasonal differences in takin movement rates were closely correlated to their changes. In

summer, the takin movement rate was negatively correlated with microenvironment

Fig 3. Seasonal differences on movement rates of 10 takins during the study period.

https://doi.org/10.1371/journal.pone.0235464.g003

Table 1. Effect estimates β (SE) of predictor variables via model on takin movement rates in each season in the study area.

Season Predictor/Fixed effect Whole day β (SE) Diurnal β (SE) Nocturnal β (SE)

Spring Sex/Male -5.15(3.45) -15.92(5.35) 11.71(2.28)

Temperature 1.05(0.21) 0.82(0.26) -0.92(0.31)

NDVI 34.93(7.87) 35.16(10.33) 35.85(9.46)

Summer Sex/Male 17.65(6.92) 21.83(8.56) 6.36(3.83)

Temperature -1.12(0.28) -2.29(0.36) -1.39(0.27)

NDVI 38.99(6.13) 49.48(8.56) 6.31(5.32)

Autumn Sex/Male -4.27(6.99) -12.24(9.83) 7.67(3.27)

Temperature 0.008(0.19) -0.26(0.26) -0.05(0.21)

NDVI 18.47(5.29) 19.81(7.57) 9.34(5.40)

Winter Sex/Male 5.80(4.01) 4.31(4.20) 7.18(5.17)

Temperature -5.87(0.07) -0.97(0.09) -0.45(0.07)

NDVI -7.88(3.96) -11.85(6.25) -5.85(3.31)

Bold indicates significant effects.

https://doi.org/10.1371/journal.pone.0235464.t001
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temperature, while there were highest temperatures. However, in winter, the takin movement

rate was still negatively correlated with microenvironment temperature, while there were low-

est temperatures. In spring, the takin movement rate was positively correlated with microenvi-

ronment temperature during daytime, but negatively correlated during nighttime. In autumn,

the takin movement rate was not correlated with microenvironment temperature (Table 1).

The takin movement rate was negatively correlated with NDVI in winter, but positively corre-

lated in the other three seasons (Table 1).

Discussion

This is the first quantitative analysis of locomotor activity patterns of B. taxicolor, an endan-

gered species, based on data from GPS collars. This research showed that the takins had a

bimodal crepuscular locomotor activity pattern, with an especially obvious movement peak at

dusk. The takins showed significant seasonal and sexual differences in their movement rates.

Our study provides evidence that microenvironment temperature and NDVI would affect

movement rate of takins in each season.

Fig 4. Monthly changes in microenvironment temperature recorded by GPS collars during the study period.

https://doi.org/10.1371/journal.pone.0235464.g004
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Our results support the prediction that the takins have crepuscular locomotor activity

peaks. Locomotor activity patterns of takins, which inhabit temperate mountain regions, were

significantly influenced by the daily and seasonal variations in photoperiod and thermoperiod.

Previous research has shown mostly crepuscular activity patterns in spring, summer and win-

ter [25, 27]. However, our study showed that the takin movement peak was more obvious at

dusk than at dawn (Fig 2). Many other wild ungulates show such crepuscular bimodal activity

[42, 43]. The frequent alternations between periods of movement and rest during the 24 h

were indicative of feeding and ruminating bouts, which are dependent on the morphological

and physiological constraint set by the digestive system [44, 45].

The takins exhibited significant seasonal differences in their movement rates. The takins

had the lowest movement rate in winter among the four seasons (Fig 3). The activity levels and

movements of ungulates usually peak in summer and then decrease in winter [46, 47]. This

might indicate a need to lower energy expenditure in winter, being the coldest period of the

year, for individuals to conserve energy [48]. Ungulates have an alternative strategy for surviv-

ing harsh overwintering conditions [16], which is extensive basking at sunrise to rewarm after

the nocturnal decrease in body temperature, without having to increase metabolic heat pro-

duction. Consequently, the peak of locomotor activity of takins at dawn occurred much later

in winter than in summer, and the winter dawn movement rate was significantly lower than in

summer (Fig 2). Moreover, the takin movement rate was negatively correlated with microenvi-

ronment temperature during daytime in winter (Table 1), indicating that the takins decrease

their movements with increasing microenvironment temperature. The takins prefer to lie

down and bask in the sun during in this period and usually select south-facing slopes with

higher solar radiation [31, 49]. During nighttime in winter, the takin movement rate was also

negatively correlated with microenvironment temperature (Table 1), indicating that takins

search for warm night habitats to avoid being exposed to the cold. Maintaining thermal bal-

ance is most important for the takins to select suitable habitats in winter [31]. In winter, when

the availability of food for the takins is lowest, the negative correlation between the takin

movement rate and NDVI (Table 1) also indicates that searching for forage is less important

than other requirements, such as conserving energy.

The foraging movement of alpine ungulates is usually influenced by plant biomass in differ-

ent seasons [50]. In spring, the microenvironment temperature of the takin habitat increased

quickly (Fig 4) and their effect estimate β on movement rates was also maximum (Table 1).

Spring is the migrating season for takins to descend into low-altitude regions [30]. Generally,

takins move to regions with warm, new green vegetation and higher quality forage in this

period [31]. By following spatiotemporal patterns in new plant growth via migration between

seasonal ranges, migratory ungulates are predicted to enhance rates of energy intake [51].

Therefore, the positive correlation between the movement rate and NDVI indicated that the

takins could forage more nutritious and abundant food during daytime in spring (Table 1). In

summer, temperatures are at their highest and takins move upward to forage in high altitude

regions [31]. Though temperatures in summer were highest during the year (Fig 4), the takin

movement rate was negatively correlated with microenvironment temperature during daytime

(Table 1), indicating that the animals prefer to inhabit a cooler environment. The decrease in

activity level in response to microenvironment temperature as a strategy against over-heating

has previously been researched in ungulates [52]. However, we know that takins also look for

abundant forage to maximize their energy acquisition in summer, based on the positive corre-

lation between the movement rate and NDVI (Table 1). This explanation is accordance with

the forage abundance hypothesis [53]. Generally, ungulates would spend more time searching

for and selecting higher quality forage when forage abundance is high [54]. In summary,

microenvironment temperature and NDVI had strong effects on takin movements.
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The takins also exhibited significant sexual differences in their movement rates. Summer is

the mating season for the species [55]. We may conjecture that higher movement rate of males

compared to females in summer is closely related to their mating behavior. Male takins com-

monly adopt visual displays in inter-sexual interaction during the mating season. Males can

effectively alter their search efforts via faster movement rates during the mating season [56].

Therefore, male takins increased their locomotor activity traveling wider areas in order to

increase their reproductive opportunities in summer [28, 55]. Spring is an important season

for female takins to feed calves [49]. Females with offspring need to search widely for high

quality food to supply their high energy expenditure during lactation, which is the most likely

reason why the female movement rates during daytime were higher than those of males in

spring. Because of calf limited vision and locomotor activity, females with offspring would be

expected to be less mobile during nighttime. Our results also showed that nocturnal locomotor

activity of females was lower than those of males in spring. Autumn is also an important season

for female takins to forage and reserve energy before the bitter winter. Reserves of energy are

very important for female pregnancy and birth in winter. Accordingly, takin movement rates

were positive correlation with NDVI in autumn. Female takins would be pregnant and give

birth in winter [49]. Females would select warm and shelter birth sites and care for her calves.

Therefore, females would be less mobile than males in winter. Our results demonstrated that

locomotor activity of females was lower than those of males in winter. To sum up, breeding

behavior and the feeding of calves have important effects on the sexual differences in move-

ment rates of takins.

Because our sampling rate (12 values per day) was lower, we could not accurately analyze

behavior activity of the takins. However, our results provide new information about locomotor

activity patterns of takins experiencing complex forested alpine and subalpine temperate envi-

ronmental conditions. First, we confirmed the prediction that both photoperiod and thermo-

period shape the bimodal pattern, with peaks at dawn and dusk for large ungulates inhabiting

temperate mountain regions. Second, we present evidence that movement rate of takins would

be correlated to sex, microenvironment temperature and NDVI, and by implication available

food resources in each season. Third, we confirmed the prediction that breeding behavior and

calves feeding have important effects on sexual differences in the movement rates of takins.
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