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Abstract

Identifying the origins of alien species has important implications for effectively controlling the

spread of alien species. The black-spotted frog Pelophylax nigromaculatus, originally from East

Asia, has become an alien species on the Tibetan Plateau (TP). In this study, we collected 300 indi-

viduals of P. nigromaculatus from 13 native regions and 2 invasive regions (including Nyingchi and

Lhasa) on the TP. To identify the source region of the TP introductions, we sequenced portions of

the mitochondrial cyt b gene. We sequenced a �600-bp portion of the mitochondrial cyt b gene to

identify 69 haplotypes (124 polymorphic sites) in all sampled populations. According to the net-

work results, we suggest that the P. nigromaculatus found on the TP was most likely originated

from Chongqing by human introduction. Furthermore, we found that the genetic diversity was sig-

nificantly lower for invasive than for native sites due to founder effects. Our study provides genetic

evidence that this alien species invaded the cold environment of high elevations and expanded the

distribution of P. nigromaculatus in China.
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Invasive species are responsible for changes to native biological di-

versity, the extinction of many native species around the globe, and

the disruption of ecosystem functions (Lockwood et al. 2013). Their

presence can inflict huge economic costs (Mack et al. 2000). Several

methods for measuring how species invade, establish, and spread

have been proposed to provide information to prevent or manage in-

vasive species (Hulme et al. 2008). Molecular approaches are among

the most important methods and have become widely used to better

understand the invasion process and the relationship between inva-

sive and source populations (Bai et al. 2012; Liebl et al. 2015;

Moule et al. 2015; Rius et al. 2015). Exploring invasion pathways

and sources can contribute to identifying the ecological characteris-

tics and physiological tolerances of source populations (Ficetola

et al. 2008). Invasion pathways and source populations can be used

to simulate potential distributions or predict future expansion (Liebl

et al. 2015).

Previous studies have suggested that regions of high elevation are

viewed as resistant to biological invasions because of an extreme cli-

mate and limited accessibility (Bennett et al. 2015; Pauchard et al.

2016). However, the risk of biological invasions is increasing due to

land-use change, climate warming, and increasing globalization in

these regions (Li et al. 2013). Non-native species move into regions

of high elevation and may change the composition of the community

(Bennett et al. 2015; Pauchard et al. 2016). These changes can be

viewed as with both positive (increasing biodiversity) and negative

(decreasing biodiversity) consequences. In contrast to the large
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number of studies conducted in low-elevation regions (Rollins et al.

2015; Sherwin et al. 2015; Wang et al. 2016), non-native species

invading regions of high elevation represent a problem in invasive

biology that remains to be addressed.

The Tibetan Plateau (TP) is the most extensive (covering an area

of 2.5 million km2) and highest (approximately 4500 m above sea

level on average) plateau in the world (Zhou et al. 2006). The TP is

a conservation priority because the plateau and its adjacent areas

cross 3 biodiversity hotspots: Indo-Burma, the Himalayas, and the

mountains of southwestern China (Mittermeier et al. 2011). The ex-

tensive variation in the topography and climate of the TP generates

a number of different habitats and supports abundant species diver-

sity (Mittermeier et al. 2011; Li et al. 2016). There are 56 amphibian

species on the TP, including 3 caudata species (Batrachuperus tibeta-

nus, Andrias davidianus, and Batrachuperus karlschmidti) and 53

anuran species (Amphibia China 2016). Furthermore, against the

background of global climate change, the TP is experiencing faster

warming than low-elevation regions at the same latitude (Liu and

Chen 2000; Qin et al. 2009; Wei and Fang 2013). This faster warm-

ing pattern may increase the risk of biological invasions and facili-

tate the rapid dispersal of disease vectors on the TP (Di Rosa et al.

2007; Liu et al. 2013).

The black-spotted frog Pelophylax nigromaculatus—native to

East Asia, including low-elevation regions of northern, eastern, cen-

tral, and southwestern mainland China; the Korean Peninsula;

Japan; and far-eastern Russia—has become an invasive species in

areas of western China, such as the Xinjiang Uyghur Autonomous

Region (Wang et al. 2016). Wang et al. (2016) showed that the inva-

sion of the alien P. nigromaculatus population in Yining originated

from the Beijing and Chongqing area based on an mtDNA analysis.

Prior to the present study, the black-spotted frog was never recorded

in the TP (Li et al. 2010). The TP is at a higher elevation than

Yining (average elevation 620 m); for example, the elevations of the

Chabalang Wetland and Nyingchi City are, respectively, 3,600 m

and 3,000 m. Such different environments may be the cause of dif-

ferent invasion processes.

In this study, we used an mtDNA marker to investigate the gen-

etic patterns underlying the expansion of P. nigromaculatus popula-

tion on the TP. We 1) compared the genetic diversity and examined

the genetic structure of P. nigromaculatus in its 13 native ranges in

China and in the 2 invaded territories of the TP, 2) identified the

source region(s) of the TP introductions, 3) discuss possible potential

damage caused by the invasion of P. nigromaculatus on the TP, and

4) discuss the application of our results to the planning of suitable

control measures.

Materials and Methods

Surveying and sampling of P. Nigromaculatus
We estimated the introduction range of P. nigromaculatus by line

transect methods in the TP (Heyer et al. 1994; Li et al. 2011). We

suggested that P. nigromaculatus breeding populations had been es-

tablished in this site when both adult and sub-adult P. nigromacula-

tus (and tadpoles) were found at survey sites (Li et al. 2011). We

obtained information on the introduction history of P. nigromacula-

tus in the TP using a questionnaire survey (Li et al. 2006, 2011). We

usually interviewed 2 or 3 residents living near the sampled water

bodies. The residence time was based on the time the first sighting

by the resident of tadpoles, eggs, or juvenile or adults of P. nigroma-

culatus or heard calls. If the interviewees gave different answers on

the residence time of P. nigromaculatus invasion for a water body,

we used the average value (year) of these answers. The longest value

for all surveyed sites in a region was defined as the residence time.

We collected 260 adult individuals from different locations (20

samples per locality) in 13 native ranges (Figure 1) in 2012. These

locations encompassed most of the distribution of this species in

northeastern, northern, central, northwestern, southeastern, and

southwestern China. We collected 40 frogs from the 2 different re-

gions of introduction (Nyingchi and Lhasa) on the TP (Figure 1) be-

tween 2014 and 2015. To determine whether a site has been

invaded successfully by P. nigromaculatus, we searched for tadpoles

of P. nigromaculatus using line transects that surveyed all accessible

water bodies at each site for 3 consecutive nights. The third toes of

individuals of P. nigromaculatus were collected, and then the tissue

samples were preserved separately in 95% ethanol and stored at

�20�C in the laboratory.

DNA extraction and amplification
Total genomic DNA was extracted from the toe tissue following the

standard method published previously (Wang et al. 2014; Shine

et al. 2016). A 695-bp segment of the mitochondrial cytochrome b

(cyt b) gene from all specimens was amplified using the primers

RanaLeuF5d (50-AA T MCC GWA AA T CTC ACCCCC T-30) and

RanacytbB1 (50-GCT GGT GTAAA T TGT CTG GGT C-30) (Yang

et al. 2003). The PCR protocol was initiated with an initial step of

denaturing of 95�C for 5 min, followed by 35 cycles of 94�C for

30 s, annealing of 56�C for 30 s, extension of 72�C for 30 s, and a

final extension step of 72�C for 10 min. The PCR products were sub-

jected to electrophoresis on 2% agarose gels and directly sequenced

using the same forward and reverse primers used for amplification

(Beijing Genomics Institute, Beijing, China).

Data analysis
We used Clustal X in MEGA 6 (Tamura et al. 2013) to align and

edit the mitochondrial cyt b gene sequences. To identify unique

haplotypes in all sampling populations, we used DnaSP 5.10 to

define these sequences (Rozas et al. 2003). Genetic diversity was as-

sessed by calculating the number of haplotypes (Hn), haplotype di-

versity (Hd), and nucleotide diversity (p) within each sampling

population using ARLEQUIN ver3.5 (Excoffier and Lischer 2010).

A neighbor-joining tree of mtDNA was constructed from the

Kimura 2-parameter nucleotide distances using Mega 6 (Tamura

et al. 2013). Branch support was calculated by the bootstrap method

according to 1,000 replicates. To identify the origin of the TP popu-

lation, we utilized the software package TCS 1.21 (Clement et al.

2000) to construct cladogram networks of P. nigromaculatus cyt b

haplotypes by statistical parsimony. We compared differences in the

number of haplotypes (Hn) between native and invasive populations

using the independent samples t-test (R Development Core Team

2012).

Results

We identified only 2 invasion sites (Nyingchi and Lhasa) for

P. nigromaculatus that has established breeding populations in the

TP. The residence time for P. nigromaculatus invasion is approxi-

mately 15 years (since the start of this century) in Nyingchi and 10

years (since 2005) in Lhasa. We determined that alien P. nigromacula-

tus in the TP originated from accidental introduction by fish farming.

In total, 300 individuals of P. nigromaculatus were collected

from the 2 invasive regions and 13 native regions (Figure 1) and
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yielded a 622-bp DNA sequence for cyt b gene. All 69 haplotypes

(H1–69) were identified by the 124 polymorphic sites in all

sampled populations (Table 1). A list of their distributions is pro-

vided in the Appendix, and the phylogenetic relationships are

shown in Figure 2. Collectively, 49 unique haplotypes and 20

haplotypes are shared among sampled populations (Appendix).

Haplotypes H1 and H2 are not found in locations other than

Chongqing and the introduced populations. Hn, Hd, and p ranged,

respectively, from 1 to 14, 0 to 0.963, and 0 to 0.01762 among

the sampled populations (Table 1). We found that the H1 and H2

haplotypes occurred in the Tibet (including Nyingchi and Lhasa)

and Chongqing populations, suggesting that the P. nigromaculatus

found in Tibet most likely originated from Chongqing (Figure 3).

The number of haplotypes (Hn) was significantly higher for native

than for invasive sites (native vs introduced populations: df¼13,

t¼2.21, P¼0.046).

Discussion

Our results suggest that the alien P. nigromaculatus population on

the TP originated from a single native-range source region

(Chongqing population). Our data provide new evidence that low

genetic diversity does not impede successful amphibian invasion on

the TP. Our study also provides a new case of a non-native spe-

cies invading high-elevation environments due to human activities

and raises awareness of the growing importance of the expan-

sion of non-native species in high-elevation cold environments.

Furthermore, the new record from the TP extends the known distri-

bution range of P. nigromaculatus in Asia by approximately

1,000 km from its ancestral area (Fei et al. 1999).

Our study shows that the recently established populations of

P. nigromaculatus on the TP have reduced genetic variability in

Table 1. Sampling information and genetic diversity indices of

P. Nigromaculatus

Population Abbreviation N Hn Hd p

Nyingchi LZ 20 2 0.526 0.01692

Lhasa LS 20 1 0 0

Chongqing CQ 20 4 0.742 0.01762

Xi’an XA 20 3 0.195 0.00032

Jiaxing JX 20 9 0.795 0.00748

Beijing BJ 20 10 0.863 0.00674

Dongying DY 20 14 0.963 0.00763

Ningbo NB 20 5 0.442 0.00127

Zhenjiang ZJ 20 12 0.926 0.00651

Qiqihar QQ 20 7 0.732 0.00162

Changchun CC 20 9 0.832 0.01631

Shenyang SY 20 6 0.621 0.00987

Xuzhou XZ 20 13 0.932 0.00721

Wenzhou WZ 20 6 0.579 0.00542

Fuzhou FZ 20 2 0.1 0.00016

Total 300 69 0.952 0.02461

Note: N, number of samples sequenced; hn, number of haplotypes; hd, haplo-

type diversity; p, nucleotide diversity.

Figure 1. Sampled areas for P. nigromaculatus in China. Backward diagonal areas indicate the Tibet Plateau. Diagonal cross areas indicate the distribution area in

Asia. Closed circles denote the sampling sites.
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comparison to native populations. The haplotype diversity in the 2

recently established populations is significantly lower than that in

the area of origin, presumably due to founder effects during the

colonization of Nyingchi and Lhasa. Frankham (2005) suggested

that mechanisms (such as multiple introduction events, purging dele-

terious alleles, and high reproductive rates) can overcome the genetic

dilemma that causes invasive populations to often show low genetic

diversity and inbreeding in the invasive region (Frankham 2005).

Previous studies have shown that P. nigromaculatus has high repro-

ductive rates (Wang et al. 2008), which may be an important factor

in the successful invasion of P. nigromaculatus on the TP.

We found that P. nigromaculatus has successfully invaded the

high-elevation (>3,000 m) regions (Nyingchi and Lhasa) on the TP.

Furthermore, other studies have discovered that a number of non-

native species have successfully invaded these regions (Fan et al.

2016). For example, Fan et al. (2016) found that 13 non-native

fish species have successfully invaded the Lhasa River of Tibet.

These studies are not in accordance with previous hypotheses

that cold environments of high elevations are often regarded as

resistant to biological invasions due to an extreme climate and lim-

ited accessibility. Therefore, it is important that we conduct more re-

search on invasion biology in regions of high elevation, such as

Tibet.

Our study suggests that the alien P. nigromaculatus on the TP

stemmed from Chongqing. A previous study found that the amphib-

ian chytrid fungus Batrachochytrium dendrobatidis (Bd) (Zhu et al.

2014, 2016), which is a lethal pathogen responsible for declines in

amphibians worldwide, was detected in P. nigromaculatus in

Chongqing. Furthermore, Bd has been found in other regions of

high elevations, such as the Andes (Seimon et al. 2007), the Rocky

Mountains (Pilliod et al. 2010), and the Sierra Nevada (Vredenburg

et al. 2010). Although some studies suggest that the cold tempera-

tures of high elevations can limit Bd (Muths et al. 2008; Pilliod et al.

2010), Knapp et al. (2011) suggest that the cold environments of

high elevations do not necessarily limit this pathogen (Knapp et al.

2011). Therefore, to prevent the introduction of Bd to native am-

phibians, we suggest that the government control the spread of P.

nigromaculatus from Chongqing to Tibet (such as developing a real-

time monitoring system).

Humans may facilitate the spread of alien species across biogeo-

graphical borders such as high elevations, which could generate

positive and negative conservation outcomes depending on these

species and the invaded community (Bennett et al. 2015). As global-

ization increases, there will not only be an intensification of biologi-

cal invasions, but the risk of pathogenic species being introduced as

contaminants of their hosts may rise (Pauchard et al. 2016). Based

on our study, schemes to prevent the invasion of P. nigromaculatus

Figure 2. Phylogenetic relationships among mtDNA haplotypes from P. nigro-

maculatus collected in both native and introduced regions. Only bootstraps

of 70 or greater are shown. The numbers correspond to the haplotype num-

bers in the Appendix.

Figure 3. Statistical parsimony cladogram network representing the relation-

ships among mtDNA haplotypes from P. nigromaculatus collected in both ori-

gin and introduced regions. Haplotype circle size is proportional to the

number of individuals, and the numbers correspond to the haplotype num-

bers in the Appendix. The backward diagonal represents the Nyingchi popu-

lation. The horizontal represents the Lhasa population. Black represents the

Chongqing population.
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on the TP should be prioritized based on those likely to have the

greatest impact. Management should be more directed toward pre-

venting the arrival of this species or catch it in the early stages of in-

vasion. Other types of management could include developing early

detection and rapid response programs and increasing educational

outreach and public awareness.
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Appendix

Population distribution of mtDNA haplotypes of P.nigromaculatus

Haplotypes LZ LS CQ XA JX BJ DY GJ ZJ QQ CC SY XZ WZ FZ

1 10 20 4

2 10 7

3 7 1 1 9 7 12

4 3 3 5

5 2 6 2 1

6 1

7 2

8 1 1 1 1 1

9 1

10 1

11 7 2 1 1

12 1 2 1

13 1

14 1

15 1

16 1 1

17 1

18 18

19 1

20 1

21 1

22 13

23 1

24 2

25 2

26 1

27 2 1

28 2

29 2 1

30 1

31 1

32 1

33 1 2

34 1 2

35 1 1

36 1 1

37 1

38 2 2

39 5 4

40 1

41 1

42 1 1

43 1

44 2 1

45 1

46 1
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Appendix (Continued)

Haplotypes LZ LS CQ XA JX BJ DY GJ ZJ QQ CC SY XZ WZ FZ

47 2

48 2

49 1

50 2 1

51 19

52 1

53 2

54 15

55 1

56 1

57 9

58 1

59 2

60 1

61 1

62 1

63 1

64 1

65 1

66 2

67 5

68 1

69 1

Total 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
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