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modelling

ABSTRACT

Blonder et al. (2014, Global Ecology and

Biogeography, 23, 595–609) introduced

a new multivariate kernel density

estimation (KDE) method to infer

Hutchinsonian hypervolumes in the

modelling of ecological niches. The

authors argued that their KDE method

matches or outperforms several methods

for estimating hypervolume geometries

and for conducting species distribution

modelling. Further clarification,

however, is appropriate with respect to

the assumptions and limitations of KDE

as a method for species distribution

modelling. Using virtual species and

controlled environmental scenarios, we

show that KDE both under- and

overestimates niche volumes depending

on the dimensionality of the dataset and

the number of occurrence records

considered. We suggest that KDE may be

a viable approach when dealing with

large sample sizes, limited sampling

bias and only a few environmental

dimensions.
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INTRODUCTION

In a recent contribution, Blonder et al.

(2014) introduced a new hypervolume

multivariate kernel density estimation

(KDE) method to delineate Hutchinsonian

hypervolumes (Hutchinson, 1957, 1978)

in high-dimensional ecological space. A

hypervolume, in this formulation, is

defined by a set of points within an n-

dimensional environmental or ecological

space that reflects suitable values of these n

variables. According to the authors, KDE

outperforms several methods for estimating

hypervolume geometries and for conduct-

ing species distribution modelling (SDM).

Blonder et al. (2014) argued that KDE is

useful for fitting observed occurrences to

environmental values and for recognizing

clusters or holes in occurrence datasets

within environmental space. Here, we show

that KDE only recognizes clusters or holes

in occurrence datasets when occurrence

data are numerous and when the dimen-

sionality of the environmental space is not

too large. Indeed, the KDE method may

have difficulty identifying holes, gaps and/

or clusters in environmental space with

limited occurrences, since in this case the

method tends to produce broad niche esti-

mates that smooth out these clusters and

holes. Caution is warranted when applying

KDE in high-dimensional space because of

the curse of dimensionality (Hastie &

Friedman, 2009, sections 2.5 & 6.3) and

the empty space phenomenon (Silverman,

1986, section 4.5). That is to say, as dimen-

sionality increases, the number of samples

required to accurately estimate a shape will

also increase dramatically.

In situations where KDE is able to rec-

ognize correctly clusters or holes in occur-

rence datasets, we argue that doing so is

useful only to the extent that the realized

niche (RN) is sought and not the funda-

mental niche (FN). Blonder et al. indicated

their KDE method estimates ‘holey’ Hutch-

insonian hypervolumes without a priori

reason to assume that a hypervolume (or

niche) should be normally or uniformly

distributed in multiple dimensions (Fig. 1e

in Blonder et al. 2014). We argue, however,

that traditional Hutchinsonian hypervo-

lumes would not fit tightly to available

occurrence data, especially if one seeks the

FN (a point also noted by Blonder et al.).

Empirical and theoretical arguments sug-

gest that FN has a convex shape (Birch,

1953; Maguire, 1973; Austin et al., 1984;

Colwell & Rangel, 2009; Ara�ujo &

Peterson, 2012; Drake, 2015) and, conse-

quently, convex hulls or ellipsoids (multi-

variate Gaussian shapes) may often be the

simplest proxy (Peterson et al., 2011).

Our argument is theoretical and empha-

sizes choice of the appropriate method for

a particular application: if the RN is

desired, the KDE method of Blonder et al.

(2014) may be a good candidate, assuming

low occurrence density and high dimen-

sionality does not prevent its practical

application (Franklin, 2005; Hastie &

Friedman, 2009, sections 2.5 & 6.3). How-

ever, if the FN is to be estimated, the KDE

method may not be ideal.

If the KDE method functions as Blonder

et al. propose, producing strict estimates of

the environmental space occupied by a

species, transferability of the model to dif-

ferent regions or time periods – a common

goal in SDM – will be limited. For exam-

ple, say available occurrences for a species

are distributed in temperatures of 15, 16,

17, 19 and 208C. In this scenario, ignoring

potential suitability for the species at 188C,

the ‘hole’ in the series, may be biologically

unrealistic. As its likely to be the case in

this simplistic example, many environmen-

tal holes in occurrence data may be due to

biases in sampling, the availability of exist-

ing environmental conditions and/or bio-

logical constraints, and do not reflect real

suitability requirements.

Based on the considerations above, we re-

evaluated the experiments of Blonder et al.

(2014) using diverse FN shapes, including

range boxes (RB; Birch, 1953), convex hulls

(CH; Godsoe, 2010; Qiao et al., 2015) and

minimum-volume ellipsoids (MVE; Maguire,

1973; Qiao et al., 2015), which have been

previously invoked and employed in ecologi-

cal studies. This reassessment identifies those

tools that best fit with a particular and

diverse set of research questions, and
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provides users with a rich source of informa-

tion for selecting model approaches.

METHODS

KDE performance

We illustrate the functionality of the KDE

method using a virtual environmental space,

E, composed of 10,000 unique random

observations in two dimensions. Different

configurations and densities of occurrences

were sampled from a virtual FN within this

environmental space, defined as a range box

[(red) rectangle in Fig. 1 and Figs. S1 & S2

in the Supporting Information]. Note that

the FN is easily estimated with virtual spe-

cies based on controlled occurrence data,

but observed occurrences from real species

will most likely capture the RN and not the

FN, which is constrained by biotic interac-

tions, accessibility and the available environ-

ment (Peterson et al. 2011). Within this

virtual FN, we collected independent occur-

rence datasets for three different sample

sizes m (m 5 10, 100 and 1000) and four

different sampling configurations: (1) evenly

distributed or unbiased (Figs. 1a, S1a &

S2a), (2) clustered or biased (Figs. 1b, S1b

& S2b), (3) absent from the centre of the

FN or ‘holey’ (Figs. 1c, S1c & S2c), and

(4)distributed in two distinct environmental

clusters (Figs. 1d, S1d & S2d). We repeated

the sampling process 10 times to capture

variation. Using these 120 sampling datasets

(i.e. 3 sample sizes m 3 4 sample configu-

rations 3 10 replicates), we estimated the

virtual FN using the KDE approach and

assessed the quality of these estimates based

on the resulting Type I (i.e. false presence,

or incorrect rejection of a true null hypoth-

esis) and Type II error (i.e. false absence, or

the failure to reject a false null hypothesis).

Error was quantified as the number of

observations in the virtual space that were

incorrectly predicted.

Comparison of KDE with other

algorithms

We created three virtual FN configurations

– RB, CH and MVE – to explore quantita-

tively the performance of different model-

ling algorithms in estimating FNs. To

create these virtual FNs, we first generated

e uncorrelated virtual environmental varia-

bles (with e taking one of four possible

values, e 5 2, 4, 6 and 8), to create the

environmental space, E, composed of

10,000 unique random observations. Envi-

ronmental values in E ranged between 0

and 1 in each of the eight dimensions

(Fig. S3). Next, we selected 10 random

observations (N) in E to define the vertices

of the FNs under three shape hypotheses,

N 5 RB, CH and MVE. Environmental val-

ues used to define N were constrained

between 0.2 and 0.8 to avoid potential

novel environmental conditions (Fig. S3).

The environmental observations inside

each of these virtual niches were regarded

as species presences. For each virtual FN

(i.e. RB, CH and MVE), we collected inde-

pendent occurrence datasets for three sam-

ple sizes, m (m 5 10, 100, and 1000) in e

environmental dimensions (e 5 2, 4, 6 and

8). This sampling process was repeated 10

times to generate random replicates of spe-

cies occurrences, which resulted in 360

simulations from the combination of 3 FN

shape hypotheses 3 3 sample sizes (m) 3 4

Figure 1 Type I and II errors

resulting from the KDE

method using small sample

sizes of m 5 1000. The (red)

rectangle denotes a virtual

fundamental niche (FN),

while the (blue) points

represent unbiased (a), biased

(b), ‘holey’, as indicated by

the inner (black) rectangle in

(c), and (d) two-clustered

observations of the virtual

FN. The (green) polygons are

the estimated niche from the

KDE method based on the

(blue) observation points.

The overlap (pink) of the

virtual FN and the estimated

niche is the portion of virtual

FN correctly predicted by the

KDE method. The shaded

(yellow) area (in b and d)

outside the virtual FN

denotes Type I error resulting

from the KDE method. The

white area with dotted

shading denotes Type II error

resulting from the KDE

method. Note that abundant

occurrences reduce Type I

error at the cost of increased

Type II error.
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environmental dimensions (e) 3 10 ran-

dom replicates.

To model the virtual FNs, we used the

methods proposed by Blonder et al.

(2014), including RB, CH, MVE and KDE.

As in Blonder et al. (2014), KDEs were

inferred using a Silverman bandwidth esti-

mator (Silverman, 1986, section 4.5) and a

quantile threshold of 0.5. Note that smaller

bandwidths (i.e. larger thresholds) will lead

to smaller hypervolumes. As aptly noted by

Blonder et al. (2014), analyses that have

few observations (m/e< 10, as a rough

guideline) will be sensitive to the choice of

bandwidth.

Following Blonder et al. (2014), we used

the volume of the niche to explore the

amount of E predicted by the models. We

compared the volume of the ‘estimated

niche’ (n) with the known ‘true’ volume

(N) of the virtual FN. Niche size measured

as volume, however, may be insensitive to

Type I error, such that the ‘true niche’ and

the ‘estimated niche’ may yield similar vol-

umes but have minimal or no environmen-

tal overlap. To avoid this problem we

evaluated all models using sensitivity (equa-

tion S1) and specificity (equation S2) based

on omission error (Fielding & Bell, 1997),

and the Jaccard index (equation S3) based

on comparisons between the known (N)

and estimated (Blonder et al. (2014) niche

volumes (Jaccard, 1912; Godsoe, 2014).

RESULTS

KDE performance

The KDE method tended to overestimate

the FN and extend beyond the occurrence

data (i.e. the RN) when using small sample

sizes. The severity of this overestimation,

however, varied depending on the sample

configuration (Figs. S1 & S2). KDE identi-

fied the ‘hole’ (black box; Figs. S1c & S2c)

only under the largest sample size (Fig. 1).

The ‘clusters’ were identified with sample

sizes over 100 (Figs. 1 & S2), but in these

instances, KDE estimates extended signifi-

cantly beyond the FN and the RN. In gen-

eral, Type I error decreased and Type II

error increased when more occurrences

were used for model calibration (Fig. 2).

Comparison of KDE with other

algorithms

In most cases, the KDE algorithm overesti-

mated the volume of the true FN when the

shape of the niche was defined as RB

(Fig. S4a), a result congruent with that of

Blonder et al. (2014). The RB and CH

algorithms returned the most variable niche

volume estimates, with consistent underesti-

mation of FN volumes. These two algorithms,

however, obtained the highest Jaccard similar-

ity values between the estimated and observed

RB FN (Fig. 3a), particularly in high-

dimensional environmental space. When the

virtual FN was defined as CH, the MVE algo-

rithm got the highest Jaccard similarity values

in the low dimension (e 5 2), KDE per-

formed best in the middle dimension (e 5 4),

and RB in the high dimension (e 5 6, 8,

Fig. 3a). When the virtual FN was defined as

MVE, we failed to replicate the results of

Blonder et al. (2014), who found that MVE

consistently overestimated niche volumes

(Fig. 4c in Blonder et al., 2014; our Fig. S4c).

Overall, method performance varied as a

function of the ‘true shape’ of the virtual

niche. That is to say, the RB method

performed best when the true shape was

RB, and so forth. In general, CH tended to

underestimate true niche volumes. Simi-

larly, MVE and RB underestimated true

niche volumes using small sample sizes,

but overestimated niche volumes using

larger sample sizes. KDE tended to under-

estimate volumes of niches in high dimen-

sionality and overestimate volumes of

niches in low dimensionality (Fig. S4).

All methods performed well in terms of

specificity and sensitivity using large sam-

ple sizes (m 5 100, 1000). Results for

smaller sample sizes (m 5 10), however,

were more variable. When considering sen-

sitivity, KDE performed well, as this

method tends to generate broader niche

estimates (Fig. S5). Broader niche esti-

mates, however, will generate more oppor-

tunities for Type I error, resulting in lower

specificity values. Indeed, the KDE method

performed worst in terms of specificity for

small sample sizes, whereas the CH

method performed best. Overall, the CH

method performed well in terms of speci-

ficity but poorly when considering sensiti-

vity (Figs. S6). As dimensionality increased,

the KDE method exhibited decreased sensi-

tivity but increased specificity, and underes-

timated the true volume of the niche. In

other words, estimates were constrained

severely in high dimensions.

DISCUSSION

Our results suggest that accuracy of niche

estimations depends on the research ques-

tion and particularities of the data. A com-

plex algorithm, such as KDE, may function

best when the goal is to fit models tightly

to available data and avoid environmental

Figure 2 Type I and II error for different sampling configurations estimated using the multivariate kernel density estimation (KDE)

method. Left: Type I error based on comparisons of the ‘true’ and estimated niche under unbiased (purple; Figs 1a, S1a & S2a), biased

(red; Figs 1b, S1b & S2b), holey (green; Figs 1c, S1c & S2c), and two-clustered (blue; Figs 1d, S1d & S2d) sampling configurations.

Estimates are based on 10 sampling replicates of 10, 100 and 1000 occurrences (m). Right: Type II error from the same study design.

The y-axis indicates the number of false observations (left; Type I error) and the number of false negatives (right; Type II error).
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interpolation across ‘holes’ in environmen-

tal space. These are often desirable features

when exploring the occupied area or RN of

a species, or the distribution of non-living

organisms (e.g. when mapping potential

wildfires). KDE, however, is sensitive

to both sample size and environmental

dimensionality. Contrary to the claims of

Blonder and colleagues, KDE may overesti-

mate niche volumes in low dimensions

and constrict niche volume estimates in

high dimensions. We found that as dimen-

sionality increases, specificity increases as

sensitivity decreases (Drake 2015; Figs. S5

& S6).

The MVE algorithm performed best

when the target shape is ellipsoid in

nature, which is often hypothesized to be

the true shape of species FNs (Hutchinson,

1957; Maguire, 1973; Brown, 1984; Drake,

2015). The CH method tended to generate

narrow niche estimates relative to the KDE

method, as reflected in the specificity and

sensitivity values. The CH algorithm may

be suitable when the goal is to estimate

suitable environmental conditions allowing

environmental interpolation, but avoiding

prediction of suitable conditions in novel

environments.

The analyses conducted herein support

the idea that there is often not a single

‘best’ algorithm or method that fits with

all ecological applications and data config-

urations for estimating species niches

(Guillera-Arroita et al., 2015; Qiao et al.,

2015). As is now common practice in phy-

logenetics, we propose that the best niche

model should be selected from a variety of

model hypotheses, based on its fit to the

nature of the data and the specific research

question (Diniz-Filho et al., 2015).
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5

1Key Laboratory of Animal Ecology and

Conservation Biology, Institute of Zoology,

Chinese Academy of Sciences,

Beijing 100101, China,
2Department of Veterinary Population

Medicine, University of Minnesota,

St Paul, MN 55108, USA,
3Minnesota Aquatic Invasive Species

Research Center, University of Minnesota,

St Paul, MN 55108, USA,
4Department of Geology & Geophysics,

Yale University, New Haven,

CT 06511, USA,
5Biodiversity Institute and Department of

Ecology and Evolutionary Biology,

University of Kansas, Lawrence, KN

66045, USA

*Correspondence: Luis E. Escobar, Veterinary

Diagnostic Laboratory, University of

Minnesota, 1365 Gortner Avenue, St Paul,

MN 55108, USA.

E-mail: lescobar@umn.edu

REFERENCES

Ara�ujo, M.B. & Peterson, A.T. (2012) Uses

and misuses of bioclimatic envelope

modeling. Ecology, 93, 1527–1539.

Austin, M.P., Cunningham, R.B. & Fleming,

P.M. (1984) New approaches to direct

gradient analysis using environmental sca-

lars and statistical curve-fitting proce-

dures. Plant Ecology, 55, 11–27.

Birch, L.C. (1953) Experimental back-

ground to the study of the distribution

and abundance of insects: III. The rela-

tion between innate capacity for increase

and survival of different species of bee-

tles living together on the same food.

Evolution, 7, 136–144.

Blonder, B., Lamanna, C., Violle, C. &

Enquist, B.J. (2014) The n-dimensional

hypervolume. Global Ecology and Bio-

geography, 23, 595–609.

Brown, J.H. (1984) On the relationship

between abundance and distribution of

species. The American Naturalist, 124,

255–279.

Colwell, R.K. & Rangel, T.F. (2009) Hutch-

inson’s duality: the once and future

niche. Proceedings of the National Acad-

emy of Sciences USA, 106, 19651–19658.

Diniz-Filho, J.A.F., Rodrigues, H., Telles,

M.P.D.C., Oliveira, G.D., Terribile, L.C.,

Soares, T.N. & Nabout, J.C. (2015) Cor-

relation between genetic diversity and

environmental suitability: taking uncer-

tainty from ecological niche models into

account. Molecular Ecology Resources, 15,

1059–1066.

Figure 3 Jaccard index for each modelling method based on the different virtual fundamental niche shapes. Fundamental niches (FN)

were represented as single hypercubes or range boxes (a), convex-hulls (b), and ellipsoids (c). To estimate these ‘true’ FNs, we used four

modelling methods: range box (RB; green), convex hull (CH; blue), minimum-volume ellipsoid (MVE; yellow), and multivariate kernel

density estimation (KDE; red). Each boxplot represents the Jaccard index of the niche according to 10 independent subsamples of

observations (m 5 10, 100, 1000) collected randomly in a two- to eight-dimensional dataset (e). Boxes closer to the top indicate better

predictions (n) in the form of high similarity or overlap between estimated (n) and ‘true’ virtual fundamental niches (N).

Kernel density methods in ecological niche modelling

Global Ecology and Biogeography, 26, 1066–1070, VC 2016 John Wiley & Sons Ltd 1069



Drake, J.M. (2015) Range bagging: a new

method for ecological niche modelling

from presence-only data. Journal of the

Royal Society Interface, 12, 10.1098/

rsif.2015.0086.

Fielding, A. & Bell, J. (1997) A review of

methods for the assessment of prediction

errors in conservation presence/absence

models. Environmental Conservation, 24,

38–49.

Franklin, J. (2005) The elements of statisti-

cal learning: data mining, inference and

prediction. The Mathematical Intelli-

gencer, 27, 83–85.

Godsoe, W. (2010) I can’t define the niche

but I know it when I see it: a formal

link between statistical theory and the

ecological niche. Oikos, 119, 53–60.

Godsoe, W. (2014) Inferring the similarity

of species distributions using species’ dis-

tribution models. Ecography, 37, 130–136.

Guillera-Arroita, G., Lahoz-Monfort, J.J.,

Elith, J., Gordon, A., Kujala, H., Lentini,

P.E., McCarthy, M.A., Tingley, R. &

Wintle, B.A. (2015) Is my species distri-

bution model fit for purpose? Matching

data and models to applications. Global

Ecology and Biogeography, 24, 276–292.

Hastie, T.R.T. & Friedman, J, (2009) The

elements of statistical learning. Data

mining, inference and prediction, 2nd

edn. Springer, New York.

Hutchinson, G.E. (1957) Concluding

remarks. Cold Spring Harbor Symposia

on Quantitative Biology, 22, 415–427.

Hutchinson, G.E. (1978) An introduction to

population ecology. Yale University Press,

New Haven, CT.

Jaccard, P. (1912) The distribution of the

flora in the alpine zone. New Phytologist,

11, 37–50.

Maguire Jr, B. (1973) Niche response struc-

ture and the analytical potentials of its

relationship to the habitat. The American

Naturalist, 107, 213–246.

Peterson, A.T., Sober�on, J., Pearson, R.G.,

Anderson, R.P., Mart�ınez-Meyer, E.,

Nakamura, M. & Ara�ujo, M.B, (2011)

Ecological niches and geographic distribu-

tions. Princeton University, Princeton, NJ.

Qiao, H., Sober�on, J. & Peterson, T.A.

(2015) No silver bullets in correlative

ecological niche modeling: insights

from testing among many potential

algorithms for niche estimation. Meth-

ods in Ecology and Evolution, 6, 1126–

1136.

Silverman, B.W. (1986) Density estimation

for statistics and data analysis. Chapman

and Hall, London.

SUPPORTING INFORMATION

Additional supporting information may

be found in the online version of this

article at the publisher’s web-site:

Figure S1 Type I and II errors resulting

from the multivariate kernel density

estimation method using small sample

sizes of m 5 10.

Figure S2 Type I and II errors resulting

from the kernel density estimation

method using sample sizes of m 5 100.

Figure S3 First two dimensions of the

eight-dimensional virtual fundamental

niches.

Figure S4 Volume of the niche models.

Figure S5 Sensitivity of each method

based on different virtual fundamental

niche shapes.

Figure S6. Specificity of each method

based on different virtual niche shapes.

Appendix S1 R functions to generate

minimum-volume ellipsoids, including

the sample data and the experiments

used in this contribution.

Appendix S2 Equations used for model

evaluation.

doi: 10.1111/geb.12492

Editor: Antoine Guisan

H. Qiao et al.

1070 Global Ecology and Biogeography, 26, 1066–1070, VC 2016 John Wiley & Sons Ltd


