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CD11bCGr-1C myeloid-derived suppressor cells (MDSCs)
are an important population of innate regulatory cells mainly
comprising monocytic MDSCs (M-MDSCs) with a phenotype
of CD11bCLy6G¡Ly6Chigh and granulocytic MDSCs (G-MDSCs)
with a phenotype of CD11bCLy6GCLy6Clow in mice. They play
crucial roles in the pathogenesis of cancers, chronic
infections, autoimmune diseases, and transplantation. Various
extracellular factors such as lipopolysaccharide (LPS),
macrophage colony-stimulating factor (M-CSF), granulocyte
macrophage colony-stimulating factor (GM-CSF), stem cell
factor (SCF), interleukin (IL)-6, interferon gamma (IFNg), IL-1b,
vascular endothelial growth factor (VEGF), Hsp72, IL-13, C5a,
and prostaglandin E2 (PGE2) can induce MDSC differentiation,
whereas IL-4 and all-trans-retinoic acid can inhibit this
process. For the intracellular signals, signal transducer and
activator of transcription (STAT) family members, C/EBPb and
cyclooxigenase-2 (COX-2) promote MDSC function, whereas
interferon regulatory factor-8 (IRF-8) and Smad3
downregulate MDSC activity. The immunosuppressive

function of MDSCs is mediated through various effector
molecules, primarily cellular metabolism-related molecules
such as nitric oxide (NO), arginase, reactive oxygen species
(ROS), transforming growth factor b (TGFb), IL-10,
indoleamine 2,3-dioxygenase (IDO), heme oxygenase-1 (HO-
1), carbon monoxide (CO), and PGE2. In this article, we will
summarize the molecules involved in the induction and
function of MDSCs as well as the regulatory pathways of
MDSCs.

Introduction

Myeloid-derived suppressor cells (MDSCs) have attracted
great interest and prompted intense studies in recent years.
MDSCs are characterized by their myeloid origin, immature
state, and immunosuppressive ability.1 This innate cell popula-
tion remains poorly defined due to inadequate surface markers.
It is known, however, that MDSCs belong to a heterogeneous
innate cell population that includes the monocytic (M-
MDSCs) and granulocytic (G-MDSCs) subsets. MDSCs accu-
mulate in large numbers during many pathological conditions
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such as cancer, infectious diseases, trauma, autoimmune dis-
eases, and transplantation.2-5 Our review will elucidate the
molecular pathways responsible for the induction and function
of MDSCs.

The Phenotypes of MDSCs

Myeloid-derived suppressor cells in mice were initially defined
as cells of the CD11bCGr-1C phenotype. Morphologically,
MDSCs consist of M-MDSCs and G-MDSCs with various
markers in mice (Table 1) and in humans (Table 2). M-MDSCs
display a phenotype of CD11bCLy6G¡Ly6Chigh, and G-MDSCs
are CD11bCLy6GCLy6Clow.6–7 Studies using each population
separately showed that CD11bCGr-1low cells are the most immu-
nosuppressive, CD11bCGr-1int cells are less immunosuppressive,
and CD11bCGr-1high cells, mostly granulocytes, are least immu-
nosuppressive.8 Other markers have been used to distinguish
these cells from other myeloid cells such as tumor-associated
macrophages, which express higher F4/80 and lower Gr-1 than
MDSCs.1 In addition to the use of CD11b and Gr-1 surface
markers and the measure of cell maturity and suppressive activity,
other strategies have also been used to identify MDSCs.9,10

Immature MDSCs express CD31 (adhesion molecular PECAM-
1), which are present on the progenitors and myeloid blast cells.
Low expression of major histocompatibility complex class II
(MHC-II) is an indication of immature MDSCs.11,12 For exam-
ple, approximately 30% of CD11bCGr-1C splenocytes express
CD31 and less than 3% of CD11bCGr-1C splenocytes express
MHC-II in a sepsis model.13 In addition, the suppressive activity
of MDSCs is associated with multiple markers including CD115
(M-CSF receptor) and CD124 (IL-4Ra).10 Compared to G-
MDSCs, M-MDSCs express higher levels of F4/80, CD115, and
CCR2, which suppress CD8C T cells via an inducible nitric
oxide (iNOS)-mediated pathway.7,14 In mice bearing C26 colon
carcinoma transduced to release mouse granulocyte-macrophage
colony-stimulating factor (GM-CSF), a population of circulating
CD11bCIL-4Ra (CD124)C monocytes with immunosuppres-
sive function is elicited by growing tumors and activated by
IFNg released by T cells, whereas CD11bCIL-4Ra¡ cells com-
prising granulocytes at different stages of differentiation are not
immunosuppressive.10 Gr-1CCD115C M-MDSCs isolated from
bone marrow can inhibit T-cell immune response in a model of
chemically induced colon carcinoma.15 However, studies with
tumor-bearing mouse models of 10 different tumor cells did not
detect the selective expression of CD124, CD115, CD80, pro-
grammed cell death ligand 1 (PD-L1), and PD-L2 on MDSCs,
indicating that their phenotype may vary from the tumor types
and animal models used.7 It was reported that the expression of
CXCR2 is much higher on CD11bCGr-1C MDSCs from G-
CSF-treated mice,16 supporting the hypothesis that the systemic
recruitment and trafficking result in increased frequencies at mul-
tiple peripheral sites. Movahedi et al. presented genetic evidence
that the loss of CXCR2 dramatically suppresses chronic colonic
inflammation and colitis-associated tumorigenesis by inhibiting
MDSC infiltration into the colonic mucosa and tumors in

a mouse model of colitis-associated cancer.17 Rhabdomyosar-
coma induces robust expansion of CXCR2CCD11bCLy6Ghi

MDSCs, and CXCR2 deficiency prevents CD11bCLy6Ghi

MDSC tumor trafficking.18 Thus, CXCR2 is identified as a
novel target for modulating tumor immune escape and
CXCR2CCD11bCLy6Ghi MDSCs are an important suppressive

Table 1. Phenotypes of mouse MDSC subsets

Molecules M-MDSCs G-MDSCs

Gr-1 CC C
CD11b C C
Ly6G – C
Ly6C High Low
F4/80 C –
CD2 (LFA-2) C –
CD11a (LFA-1) C C
CD14 – –
CD16low C C
CD31 (PECAM-1) C –
CD34 – –
CD43 C C
CD44 C C
CD49d C –
CD54 (ICAM-1) High Low
CD62L C C
CD71 (transferrin receptor) C –
CD80 (B7–1) C C
CD115 (M-CSFR) C –
CD117 (C-kit) – –
CD162 (PSGL-1) C C
CD124(IL-4Ra) C C
CD204 (SR-A) – –
B7H1 (PD-L1) C
B7H1 (PD-L1) §
MHC II Low Low
MHC I C C
HLA-DR- – –
CCR2 High Low
CXCR2 C C
CXCR4 C C
TIE2 – –
Integrin a4b1 Subset –
VEGF2 C C
VEGF1 C C

Table 2. Phenotypes of human MDSC subsets

Molecules M-MDSCs G-MDSCs

CD11b C C
Gr-1 – –
CD13 Subset Subset
CD14 C –
CD15 – C
CD16low Subset Subset
CD33 C C
CD34 Subset Subset
CD38 Subset Subset
CD39 C C
CD66b – C
MHC II Low Low
Lin- C C
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myeloid subset in certain tumors and inflammatory diseases. In
addition, the expression of CD49d (also known as intengrin-a4)
has been used to differentiate between M-MDSCs and
G-MDSCs. CD49dCMDSCs appear to be M-MDSCs with
immunosuppressive activity, while CD49d¡MDSCs represent a
granulocytic phenotype with little T–cell-inhibitory activity.19

In humans, the phenotype of MDSCs is more elusive
(Table 2). In the late 1990s, human MDSCs were classified by
CD34 expression and immunosuppressive activity in patients
with GM–CSF-secreting cancers.4,20,21 These MDSCs are Lin¡

(CD3¡CD19¡CD13¡CD56¡) CD34C cells. The lack of human
leukocyte antigen (HLA)-DR expression is also a phenotype of
human MDSCs.22 In human blood, MDSCs can be divided into
2 subpopulations: CD11bCCD14¡CD15C G-MDSCs and
CD11bCCD14CHLA-DRlow/neg M-MDSCs.1,23,24 In other stud-
ies of cancer patients, MDSCs express the myeloid cell markers
CD33 and CD11b and granulocyte markers.22,25,26 MDSCs
detected in the peripheral blood of tumor patients express the
common myeloid marker CD33 but lack the markers of mature
myeloid cells like HLA-DR.22,27,28 Based on the expression of
granulocytic marker CD15, MDSCs are divided into at least 2
subsets. The CD15C MDSCs are granulocytic like mouse
Gr-1high MDSCs, whereas the CD15¡ subset of monocytic
MDSCs has been shown to suppress T-cell function in patients
with kidney cancer through arginase and/or reactive oxygen spe-
cies (ROS)-dependent mechanisms.24,29 The clinical studies
showed that human MDSCs in the peripheral blood of patients
with renal cell carcinoma are a subpopulation of activated poly-
morphonuclear cells expressing high levels of CD66b, CD11b,
and vascular endothelial growth factor receptor 1 (VEGFR1), and
low levels of CD62L and CD16.23 The circulating CD14CHLA-
DR¡/low MDSCs in advanced malignant melanoma patients dis-
play overexpression of CD80, CD83, and DC-Sign.30 The pro-
portion of CD45CCD13CCD33CCD14¡CD15¡ MDSCs is
significantly increased in primary breast cancer tissues and the
peripheral blood of patients.31 Therefore, the phenotypes of
MDSCs may be distinct in patients with different diseases. Never-
theless, to avoid any confusion, it may be necessary to clearly
define each subpopulation of MDSCs, including G-MDSCs and
M-MDSCs, in mice and humans besides using CD11b and Gr-1
markers. Identification of new surface markers for G-MDSCs and
M-MDSCs still needs to be intensively explored.

The Immunosuppressive Function of MDSCs

T cells
Myeloid-derived suppressor cells remarkably suppress the pro-

liferation and cytokine secretion of T cells and induce their apo-
ptosis.32–34 The presence of activated granulocytes in the
peripheral blood of tumor patients correlates with the reduction
of TCRz chain expression and cytokine production by T cells.25

It was reported that decreased TCRz chain expression on CD8C

T cells is strongly associated with increased MDSCs in patients
with chronic hepatitis C and is restored by L-arginine treatment
in vitro.35 Gr-1CCD11bC MDSCs are able to take up soluble

proteins in vivo, process them, and present antigenic epitopes on
their surface and induce antigen (Ag)-specific T-cell anergy,36

implicating their possible role in tumor-associated CD8C

T-cell tolerance. CD14CHLA-DR¡/low cells isolated from hepa-
tocellular carcinoma patients can induce the development of
CD4CCD25CFoxp3C regulatory T cells (Tregs) when co-cul-
tured with autologous T cells.28 Thus, MDSCs may suppress
immunity through the induction of T-cell anergy and Tregs.

Natural killer cells
Myeloid-derived suppressor cells from liver cancer-bearing

mice significantly inhibit the cytotoxicity, NKG2D expression,
and interferon gamma (IFNg) production of natural killer
(NK) cells as well as induce anergy of NK cells.37 The deple-
tion of MDSCs rescues the function of impaired hepatic NK
cells. In 1 study, MDSCs from chronic inflammation cause T-
and NK-cell dysfunction associated with TCR z chain
(CD247) downregulation. CD247 is a key factor for the initi-
ation of immune responses and is affected by the immunosup-
pressive milieu generated.38 Furthermore, membrane-bound
transforming growth factor b 1 (TGFb1) on MDSCs is
responsible for MDSC-mediated suppression of NK cells.37

Therefore, cancer-induced MDSCs, acting through mem-
brane-bound TGF-b1, are the main negative regulators of
hepatic NK cells in tumor-bearing hosts.

B cells
The fundamental B-cell response seems susceptible to MDSC

regulation because MDSC inhibition of both antigen-specific T-
cell responses and broad non-major histocompatibility complex
(MHC)-restricted responses to polyclonal activators and mito-
gens have been widely reported.39 LP-BM5 retrovirus infection
in mice, which causes acquired immunodeficiency, can induce
highly immunosuppressive CD11bCGr-1CLy6CC MDSCs capa-
ble of suppressing both T and B cells via nitric oxide (NO)
signaling.39

Dendritic cells
Myeloid-derived suppressor cells and dendritic cells (DCs) are

both important regulators of immune responses against tumors
and infections. The combined treatment of bone marrow-derived
MDSCs with LPS and IFNg inhibits the development of DCs
and enhances MDSC suppressive activity.40 MDSCs can
decrease the efficacy of DC vaccines. MDSC frequency does not
affect the yield or viability of the DCs produced, but induces a
dose-dependent decrease in DC maturation. High frequencies of
CD14CHLA-DR¡/low cells can inhibit DC maturation and
engender impaired DC function, which are important for vaccine
success.41 Thus, the balance between MDSCs and DCs may play
an important role in tumor and infection therapy.

The Induction of MDSCs

Several studies have shown that emergency myelopoiesis indu-
ces the production and accumulation of MDSCs in mice and
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humans (Fig. 1). Intraperitoneal injection of Lacto-N-fucopen-
taose III (LNFPIII)-dextran results in rapid expansion of Gr-
1CF4/80CCD11bC peritoneal cells that can suppress naive
CD4C T-cell proliferation.42 Notably, LNFPIII-dextran also
induces functional immunosuppressive Gr-1C macrophages in
T/B cell-deficient SCID mice,42 demonstrating that an adaptive
immune system is dispensable for the induction of MDSCs in
this particular model.

Inflammatory cytokines and growth factors
The granulocyte macrophage colony-stimulating factor (GM-

CSF) was reported to induce the differentiation of mouse bone

marrow cells into immuno-
suppressive CD11c¡Ly-
6CCLy-
6GlowCD11bCCD31CER-
MP58CasialoGM1CF4/80C

cells in vitro.12 The adminis-
tration of GM-CSF-based
vaccines in metastatic mela-
noma patients markedly
increases CD14CHLA-
DR¡/low MDSCs in the
peripheral blood.43 The
administration of recombi-
nant G-CSF or IL-2 in mice
results in the accumulation
of Gr-1CCD11bC MDSCs
and Treg cells in the periph-
eral lymphoid organs, which
significantly delays alloge-
neic donor skin rejection.16

It was reported that IL-1R
deficiency delays MDSC
accumulation in tumor-
bearing mice.44 In contrast,
excessive inflammation in
IL-1R antagonist-deficient
mice promotes the accumu-
lation of MDSCs with
enhanced immunosuppres-
sive activity.44 Mice bearing
tumor cells with a siRNA
knockdown of stem cell fac-
tor (SCF) exhibit signifi-
cantly reduced MDSC
expansion.45 Injection of
IL-6 increases the accumula-
tion of MDSCs in tumor-
bearing IL-1R-deficient
mice, indicating that IL-6 is
a mediator for the induction
of MDSCs.44 Cytokines
GM-CSF, G-CSF, and IL-6
produced by various tumors
can allow rapid generation

of MDSCs from precursors present in mouse and human bone
marrow. Furthermore, MDSCs induced by GM-CSFCIL-6 pos-
sess high tolerogenic activity, as revealed by their ability to inhibit
CD8C T-cell proliferation and allow long-term acceptance of
pancreatic islet allografts.46 Recent studies found that adding
poly(I:C) to the standard DC polarizing condition in which DCs
are generated in culture with GM-CSF and IL-4 can accumulate
MDSCs after extended stimulation.47 This indicates that poly(I:
C) favors the development and expansion of MDSCs. The proin-
flammatory molecule S100A9 interacts with its receptor CD33 to
induce bone marrow accumulation of MDSCs in both mice and
humans with myelodysplastic syndromes. Further studies showed

Figure 1. Molecules involved in the induction and function of MDSCs. Numerous factors can induce the develop-
ment and differentiation of MDSCs. These factors include, but are not limited to, lipopolysaccharide (LPS); macro-
phage-colony stimulating factor (M-CSF); granulocyte macrophage-colony stimulating factor (GM-CSF); stem cell
factor (SCF); interleukin 6 (IL-6); interferon gamma (IFNg); IL-1b; vascular endothelial growth factor (VEGF); Hsp72;
IL-13; C5a; and prostaglandin E 2 (PGE2). IL-4/GM-CSF and all-trans-retinoic acid may inhibit the development of
MDSCs. Some of the intracellular molecules involved in MDSC function include Stat3, COX-2, hypoxia-inducible fac-
tor 1a (HIF-1a), C/EBPb, inducible nitric oxide synthase (iNOS), arginase, heme oxygenase 1 (HO-1), and IDO. The
known effector molecules of MDSCs include: (1) arginase-1, which induces arginine deprivation and causes CD3z
nitrosylation and downmodulation; (2) iNOS, which induces nitric oxide (NO) production and leads to T-cell apopto-
sis and inhibition of T-cell proliferation; (3) NOX2, which inhibits T-cell proliferation through reactive oxygen species
(ROS) production, CD3z and major histocompatibility complex (MHC)-I nitration; (4) the enzyme HO-1, which leads
to inhibition of T-cell proliferation through carbon monoxide (CO) production; (5) MDSCs that prevent antigen-pre-
senting cells (APCs) from providing sufficient cysteine to T cells for glutathione (GSH) production, thus inhibiting T-
cell proliferation; (6) membrane-bound TGFb1, which promotes NK cell anergy and induced regulatory T cells
(iTreg); (7) IL-10 promotes Th2 deviation and type 2 macrophage polarization; (8) ADAM metallopeptidase domain
17 (ADAM17) activity leads to cleavage of L-selectin (CD62L) on T cells resulting in inhibition of T-cell homing to
lymph nodes and sites of inflammation.
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that S100A9/CD33 activates immunoreceptor tyrosine-based
inhibition motif (ITIM) to induce secretion of the immunosup-
pressive cytokines IL-10 and TGFb by immature myeloid cells.48

The proinflammatory proteins S100A8/A9 have the ability to
induce Gr-1highCD11bhighF4/80¡CD80CIL-4RaC/¡ArginaseC

MDSCs.49 Studies with transgenic and gene knockout mice
showed that tumor-induced upregulation of S100A9 protein is
essential for the accumulation of MDSCs.50 S100A8/A9 proteins
interact with carboxylated N-glycans on the cell surface glycopro-
tein receptors of MDSCs to activate the NF-kB pathway and pro-
mote MDSC accumulation.49 Inhibition of S100A8/A9 binding
to MDSCs using an anti-carboxylated glycan antibody reduces
MDSC levels in the blood and secondary lymphoid organs of
mice with metastatic diseases.49

Tumor-derived factors
In female transgenic mice that spontaneously develop mam-

mary carcinomas from the expression of rat oncogene c-erbB-2,
MDSCs can be induced by the release of VEGF but not GM-
CSF.51 Administration of all-trans retinoic acid (ATRA) dramat-
ically reduced the presence of MDSCs in mouse tumor models.52

ATRA at effective concentrations (>150 ng/mL blood) signifi-
cantly decreases MDSC numbers in the peripheral blood of
patients with metastatic renal cell carcinoma.53 Prostaglandin E2
(PGE2) and other cyclooxigenase-2 (COX-2) activators like lipo-
polysaccharide (LPS), IL-1b and IFNg induce CD11bCGr-1C

MDSCs by promoting COX-2 expression in monocytes and
blocking their differentiation into mature DCs,54,55 thereby sup-
porting the central role of COX-2-PGE2 feedback in the induc-
tion and persistence of MDSCs. High PGE-producing tumor
cells constitutively expressing COX-1 and COX-2 induce argi-
nase I expression in MDSCs via PGE2 receptor E-prostanoid
4.56,57 Genetic and pharmacological inhibition of COX-2, but
not COX-1, block arginase I induction in vitro and in vivo and
elicit a lymphocyte-mediated antitumor response.56 These results
demonstrate a novel pathway for prostaglandin-induced immune
dysfunction and suggest a new mechanism for the cancer-preven-
tion effects of COX-2 inhibitors. IFNg can drive circulating
CD11bCIL-4RaC MDSCs responsive to IL-13 and immunosup-
pressive factors.54 Hsp72 was proven to be essential for the
expansion, activation, and suppressive function of mouse and
human MDSCs through a Stat3 signaling pathway.58 The
tumor-derived exosome-associated Hsp72 determines the sup-
pressive activity of the MDSCs via activation of Stat3 in a TLR2/
MyD88-dependent manner.58 Several tumor-derived factors
such as TGFb, IL-3, IL-6, IL-10, platelet-derived growth factors,
and GM-CSF can also induce ROS production by MDSCs.59

Gr-1CCD11bC myeloid cells are recruited into mammary carci-
nomas with type II TGFb receptor gene deletion and directly
promote tumor metastasis.60 This may be explained by increased
TGFb1 in tumors with TGFbR2 deletion and enhanced SDF-1/
CXCR4 and CXCL5/CXCR2 chemokine axes.60 Tumor-
secreted growth factors not only induce myelopoiesis and chemo-
kines that recruit MDSCs but also regulate MDSC development
and maturation. For example, TNFa impairs MDSC matura-
tion38 by regulating RAGE and its ligands S100A8 and

S100A9.50 In addition, overexpression of fms-like tyrosine kinase
3 ligand in tumor-bearing mice results in increased MDSCs that
inhibit the antitumor activity of effector immune cells.61 Com-
plement anaphylatoxin C5a increases tumor-infiltrating MDSCs
with an immunosuppressive activity through ROS and reactive
nitrogen species (RNS) regulation.62

The factors mediating the apoptosis and proliferation
of MDSCs

Besides soluble factors, MDSCs are controlled by their expres-
sion of Fas which leads to cell apoptosis after associating with
Fas-L on activated T cells.63 In lupus-prone MRL-Faslpr mice,
CD11bCGr-1low cells, which can suppress CD4C T-cell prolifer-
ation via Arg1, significantly increase in percentage in the kidneys
and blood during disease progression.64 This indicates that the
Fas pathway may be involved in the regulation of MDSCs in
mice.

Recently, it has been reported that endoplasmic reticulum
(ER) stress can regulate MDSC fate through TNF-related apo-
ptosis-induced ligand receptor (TRAIL-R)-mediated apoptosis.65

MDSCs in tumor-bearing mice are less viable and have shorter
half-lives compared with normal monocytes and neutrophils.
The reduced MDSC viability is due to increased apoptosis medi-
ated by the expression of TRAIL-Rs on these cells. Thus,
TRAIL-Rs may be considered as potential targets for selective
inhibition of MDSCs.

Additionally, 1 study using microRNA (MiR) microarray and
TaqMan probe–based quantitative real-time polymerase chain
reaction (RT-PCR) assay identified miR-155 and miR-21 as the
2 most transcribed miRNAs during the induction of MDSCs
from bone marrow cells by GM-CSF and IL-6.66 Overexpression
of miR-155 and miR-21 enhances the frequency of cytokine-
induced MDSCs and induces the expansion of both monocytic
and granulocytic MDSCs.66 Accordingly, depletion of miR-155
and miR-21 has the opposite effect. These results demonstrate a
novel miR-155/miR-21–based regulatory mechanism that mod-
ulates functional MDSC induction.

As previously mentioned, a plethora of growth factors and
inflammatory cytokines regulates the development of MDSCs.
However, in an immune reconstitution mouse model, the adop-
tive transfer of Gr-1CCD115C M-MDSCs derived from CD40-
deficient mice fails to induce tolerance and Treg cell development
in vivo.67 This suggests that the immune stimulatory receptor
CD40 is essential for MDSC-mediated immune suppression and
tumor-specific Treg cell expansion. Other plausible co-stimula-
tory molecules involved in the regulation of MDSC development
should be further explored. In addition, whether the develop-
ment of G-MDSCs and M-MDSCs requires similar or different
stimulating factors needs to be addressed in the near future.

The Intracellular Molecular Regulation of MDSCs

Stat family
Studies in a mouse sepsis model showed that signaling

through MyD88 is required for the expansion of CD11bCGr-1C
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MDSCs expressing high IL-10.13 Tumor-derived exosomes-asso-
ciated Hsp72 triggers Stat3 activation in MDSCs in a TLR2/
MyD88-dependent manner and determines their immunosup-
pressive activity.58 Increased levels of Stat3 in an active state were
noted in CD14CHLA-DR¡/low MDSCs of advanced malignant
melanoma patients.30 Importantly, inhibition of Stat3 relieves
the suppressive activity of MDSCs almost completely.30 Given
the redox imbalance in MDSCs, the authors speculated that
Stat3-dependent oxidative stress through the regulation of
NADH oxidase might play an important role in MDSCs-medi-
ated T-cell suppression.30 Markedly enhanced functions of DCs,
T cells, NK cells, and neutrophils are observed in tumor-bearing
mice with Stat3-deficient haematopoietic cells.68 Targeting Stat3
with a small-molecule drug induces T- and NK–cell-dependent
growth inhibition of established tumors in mice.68 These results
indicate that Stat3 signaling restricts host natural tumor immune
surveillance and that inhibiting haematopoietic Stat3 in tumor-
bearing hosts efficiently triggers therapeutic anti-tumor immu-
nity. Culture of peripheral blood mononuclear cells (PBMCs)
with pancreatic stellate cell supernatants for 7 d promotes PBMC
differentiation into a CD11bCCD33CMDSC phenotype and a
subpopulation of polymorphonuclear CD11bCCD33CCD15C

cells, which functionally suppresses autologous T-cell prolifera-
tion.69 The supernatant of the cultured pancreatic stellate cells
leads to Stat3 but not Stat1 or Stat5 phosphorylation in co-cul-
tured PBMCs, and Stat3 inhibitor FLLL32 abrogates the
induced MDSC differentiation.69 Thus, pancreatic cancer cells
induce MDSCs in a Stat3-depdendent manner. Indoleamine
2,3-dioxygenase (IDO) expression and Stat3 phosphorylation are
significantly upregulated in MDSCs isolated from fresh human
breast cancer tissues, which strongly correlates with increased
infiltration of Foxp3C Treg cells in tumors and lymph node
metastasis in patients.31 These MDSCs inhibit IL-2 and anti-
CD3/CD28 mAb-induced T-cell amplification and Th1 polari-
zation in an IDO-dependent manner. IDO inhibitor 1-methyl-
L-tryptophan or Stat3 antagonist JSI-124 blocks MDSCs’ immu-
nosuppressive activity on T cells,31 indicating that Stat3-depen-
dent IDO expression mediates the immunosuppressive effects of
MDSCs in breast cancer. However, F4/80C tumor-associated
macrophages are able to inhibit T–cell-mediated immune
response in vitro via induction of T-cell apoptosis through argi-
nase- and NO-independent manners.70 Using Stat knockout
(KO) mice, Kusmartsev et al. determined that Stat1 but not
Stat3 or Stat6 is responsible for the immunosuppressive activ-
ity.70 Although Stat3 is considered the central transcription fac-
tor for MDSC expansion, Stat3 inhibition or ablation does not
abolish but augments Flt3L-mediated MDSC expansion.71 In
contrast, the Flt3L-mediated DC expansion is reduced when
Stat3 is inhibited or deleted. Thus, Stat3 has opposite effects on
Flt3L-induced immunosuppressive MDSCs and immunostimu-
latory DC expansion. The roles of Stat family members in
MDSCs require further clarification.

C/EBPb
Studies using mice with C/EBPb deletion in all haemato-

poietic lineage cells showed that the induced MDSCs and the

immunosuppressive activity of both tumor-induced and bone
marrow-derived MDSCs are entirely dependent on the transcrip-
tion factor C/EBPb.46 Adoptive transfer of tumor antigen-
specific CD8C T cells results in tumor clearance only in mice
lacking C/EBPb in the myeloid compartment.46 These data sug-
gest that C/EBPb is a critical regulator in the development of
MDSCs.

Hypoxia-inducible factor
HIF-1a was found to be primarily responsible for MDSC dif-

ferentiation and function in the tumor microenvironments.72

Hypoxia causes a rapid, dramatic, and selective upregulation of
PD-L1 on splenic MDSCs in tumor-bearing mice.73 Further-
more, the upregulation of PD-L1 is dependent on HIF1-a, but
not HIF-2a. Blockade of PD-L1 under hypoxia enhances
MDSC-mediated T-cell activation and is accompanied by the
downregulation of IL-6 and IL-10. Thus, the blockade of PD-
L1, accompanied by the inhibition of HIF-1a, may be a novel
approach in cancer immunotherapy. The tyrosine kinase inhibi-
tor sunitinib-based therapy has the potential to modulate antitu-
mor immunity by reversing tumor-induced MDSC-mediated
immunosuppression.29

Interferon regulatory factor-8
Myeloid-derived suppressor cell-inducing factors G-CSF and

GM-CSF facilitate IRF-8 downregulation via Stat3- and Stat5-
dependent pathways.74 IRF-8–deficient mice generate myeloid
populations highly homologous to tumor-induced MDSCs with
respect to their phenotype, function, and gene expression profile,
whereas IRF-8 overexpression in mice attenuates MDSC accu-
mulation.74 These results implicate that IRF-8 may be a negative
regulator of MDSC development and a potential molecular tar-
get for modulating MDSCs in patients.

Smad3
Using an allogeneic skin-graft mouse model, we discovered

more CD11bCGr-1C myeloid cell infiltration and less T-cell
infiltration in allografts occur in Smad3-deficient recipients.33

Notably, the increased CD11bCGr-1Cmyeloid cells in Smad3-
deficient mice are immunosuppressive and responsible for the
delayed allograft rejection, largely via an NO-dependent path-
way.33 Thus, our study pinpoints Smad3 as an intrinsic negative
regulator that critically inhibits the differentiation and function
of immunosuppressive CD11bCGr-1C MDSCs. However,
whether Smad3 is activated by TGFb or other factors in MDSCs
should be studied in the future.

Ras
Ras can promote tumor growth by altering tumor microenvi-

ronment. In a pancreatic cancer-bearing mouse model, overex-
pression of constitutively active Kras leads to the induction of
cytokines like MIP-2 and MCP-1, promoting the recruitment of
macrophages and MDSCs into the tumor stroma to suppress
antitumor immune response.75 Similarly, in a Kras-driven lung
cancer model, the immune response is attenuated by the presence
of MDSCs in the tumor stoma.76 Thus, the overexpression of
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Ras in cancer cells, which facilitates MDSC recruitment and pro-
motes tumor growth, may be an additional pathway that links
Ras with tumor development.77

Peroxisome proliferator-activated receptor-g
Peroxisome proliferator-activated receptor-g (PPARg) is an

anti-inflammatory receptor. dnPPAR overexpression that leads to
the upregulation of IL-1b, IL-6, and TNFa in the blood plasma.
As a result, CD11bCLy6GC cells are systemically increased.78

Myeloid cells can directly differentiate into MDSCs in PPARgC
knockout mice.78 Therefore, PPARg plays a key role in control-
ling MDSC expansion and immunosuppression in myeloid-line-
age cells.

Src homology 2 domain-containing inositol 59-
Phosphatase-1

Src homology 2 domain-containing inositol 59-phosphatase-1
(SHIP-1) influences phosphatidylinositol-3-kinase (PI3K) signal-
ing events, which regulate immune homeostasis. One study
showed that myeloid-specific ablation of SHIP leads to the
expansion of both MDSCs and Treg cell numbers, indicating a
SHIP-dependent regulation of Treg cells by a myeloid cell
type.79 Meanwhile, G-CSF levels are profoundly increased in
SHIP¡/¡ mice, suggesting that this myelopoietic growth factor
can promote MDSC expansion in a cell-extrinsic manner. Thus,
SHIP controls MDSC numbers, in part, by limiting production
of the myelopoietic growth factor G-CSF.79 In addition, SHIP-
1-regulated MDSC expansion and function may contribute to
pancreatic tumor progression.80

MyD88
The activation of MyD88-NF-kB signaling is closely associ-

ated with MDSC expansion in infection and LPS shock models.
Toll-like receptors (TLRs) and IL-1R can regulate MDSCs by
activating NF-kB signaling.13 TLR ligation upregulates the trig-
gering receptor expression on myeloid cells via MyD88-activated
NF-kB signaling.81 MDSCs deficient in MyD88 develop into
stimulatory cells.82 Furthermore, CD4C T cells residing in
tumor-draining lymph nodes of MyD88¡/¡ mice secret more
TNFa than those of wild-type mice. Finally, the blockade of
MyD88 signaling with MyD88 inhibitory peptides during later
tumor stages drastically restricts the growth of immunogenic
tumors.83 Overall, these data suggest that signaling through the
MyD88 adaptor molecule is critical for the direct suppressive
function of MDSCs, and blocking MyD88-mediated signaling
in MDSCs might effectively inhibit the immunosuppressive
function of MDSCs.

Notch
It is well known that Notch tightly regulates the progressive

lineage commitment of haematopoietic stem cells.84 Recently, it
was demonstrated that the increased activity of casein kinase 2
(CK2) observed in MDSCs might be responsible for the phos-
phorylation of Notch and downregulation of Notch signaling.
Moreover, inhibition of CK2 restores Notch signaling in myeloid
cells and substantially restores their ability to differentiate both in

vitro and in vivo.85 Overall, this may prompt a new perspective
on the pharmacological regulation of MDSC differentiation in
cancer.

Based on the current studies, Stat, C/EBPb, Flt3-Flt3L，
PPARg, SHIP, Ras, NF-kB, and Notch signaling pathways are
inducers of MDSCs. On the other hand, IRF8 and Smad3 are
negative regulators for the differentiation of MDSCs.

Effector Molecules of MDSCs
The underlying mechanisms of MDSC-mediated immune-reg-

ulation are clearly defined. In general, G-MDSCs primarily use
ROS as the mechanism of immunosuppression. In contrast, M-
MDSCs primarily use upregulation of iNOS, arginase, and an
array of immunosuppressive cytokines to inhibit various immune
functions (Fig. 2). Studies implicated that pathways involving argi-
nase 1, iNOS, ROS, and induction of IDO are the major media-
tors of immunosuppression by MDSCs. CD11bCCD14¡CD15C

G-MDSCs with a polymorphonuclear granulocyte morphology
and increased arginase activity in human cancer patients cause low
levels of arginine and high levels of ornithine in the plasma as well
as immunosuppression.26 PMNs may induce arginase1-dependent
immunosuppression through concomitant exocytosis of gelatinase
and azurophil granules.86 The important role of the arginase 1
and iNOS pathways, which has been thoroughly reviewed,1,24,87,88

will be omitted from our discussion.
Repetitive injections of LPS efficiently induce CD11bCGr-1C

MDSCs, which suppress T-cell proliferation and Th1 and Th2
cytokine production in vitro.89 Adoptive transfer of these
induced CD11bC MDSCs into untreated recipients significantly
prolonged allo-skin-graft survival.89 MDSCs induced with this
protocol produce large amounts of IL-10 and highly express
heme oxygenase-1 (HO-1), a stress-responsive enzyme with
immunoregulatory and cytoprotective properties critically
involved in the immunosuppressive ability in the allo-skin graft
mouse model.89 This study reveals that HO-1 is one of the key
mediators of MDSC-associated suppression mechanism in
transplantation.

CD14CHLA-DR¡/low MDSCs induced by the administration
of GM-CSF-based vaccines in metastatic melanoma patients
direct immunosuppression via a TGFb-dependent pathway.43

CD14CHLA-DR¡/low MDSCs, increased in the blood
and tumor of hepatocellular carcinoma patients, have high
arginase activity, are immunosuppressive, and induce
CD4CCD25CFoxp3C Treg cells in co-culture with host CD4C

T cells.28 CD11bCGr-1C MDSCs of liver cancer-bearing mice
can inhibit NK cell function and induce anergy of NK cells via
membrane-bound TGF-b1.37 In a model of chemically-induced
colon carcinoma, either Gr-1CCD115C or Gr-1CF4/80C

M-MDSCs isolated from the bone marrow can inhibit T-cell
immune response via inducible nitric oxide synthase 2
(NOS2).15 These MDSCs are also able to trigger CD25C Treg
cell induction in vivo by the secretion of IL-10 and TGF-b.15 It
was reported that Gr-1CCD11bC MDSCs in a sepsis mouse
model contribute to poor T-cell response and preferential Th2
polarization through IL-10.13 In addition, TGF-b can regulate
MDSC function indirectly by altering microRNA expression. In
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tumor bearing mice, TGFb can regulate MDSC proliferation by
inducing miRNA494 expression. Deletion of miRNA494 in
MDSCs enhances tumor growth and metastasis.90

In mice bearing GM-CSF–transduced C26 colon carcinoma,
circulating CD11bCIL-4RaC monocytes produce IL-13 and
IFNg to trigger the molecular pathways that inhibit antigen-acti-
vated CD8C T cells.10 It was found that i.p. injection of Lacto-
N-fucopentaose III (LNFPIII)-dextran results in rapid expansion
of the subpopulation of Gr-1CF4/80CCD11bC peritoneal cells,
which can suppress anti-CD3/CD28-induced proliferation of
naive CD4C T cells. Addition of the iNOS inhibitor N(G)-
monomethyl-L-arginine and anti-IFNg antibody restore the abil-
ity of CD4C T cells to proliferate in vitro, indicating that these
induced MDSCs mediated immunosuppression through NO-
and IFNg-dependent manners.42

Induction of IDO, the rate-limiting enzyme in tryptophan
degradation in the kynurenine pathway, acts as a potent
immunoregulatory loop by MDSCs. Compared to healthy
donor cells, CD14CHLA-DR¡/low MDSCs in allogeneic hae-
matopoietic stem cell transplanted patients are pStat1low and
IDOhigh.91 Importantly, dysfunction of the patients’ T cells
including reduced proliferative capacity and CD3zchain

expression is rescued by blocking IDO activity in CD14CHLA-
DR¡/low MDSCs.91 It was reported that the inhibitory effects of
tumor-induced G-MDSCs on Treg differentiation from naive
CD4C T cells depend on ROS and IDO but not arginase 1,
iNOS, NO, cystine/cysteine depletion, PD-1/PD-L1, or
COX-2.92 IDO expression is significantly upregulated in
CD45CCD13CCD33CCD14¡CD15¡ MDSCs in primary
breast cancer tissues and the patients’ peripheral blood.31 Further
studies showed that these MDSCs inhibit IL-2 and anti-CD3/
CD28 monoclonal antibody (mAb)-induced T-cell proliferation
and Th1 polarization in an IDO-dependent manner.31 Thus,
blocking IDO to reverse MDSC-induced T-cell suppression may
represent a novel approach for cancer immunotherapy.

Cysteine is an essential amino acid for T-cell activation
because T cells lack cystathionase, which converts methionine
into cysteine. MDSCs express the xc-transporter to import cys-
tine but not the ASC transporter to export cysteine. Thus,
MDSCs compete with APCs for extracellular cystine and limit
the extracellular pool of cysteine, thereby depriving T cells of
the cysteine they require for activation and function. This study
presents a new mechanism for the MDSC-mediated immuno-
suppression of T cells, namely the deprivation of essential

amino acids in their
microenvironment.93

The inhibitory role of G-
MDSCs on TCRz chain
expression and cytokine pro-
duction by T cells is abro-
gated by the addition of a
hydrogen peroxide (H2O2)
scavenger, catalase.25 This
implicates that G-MDSC–
derived H2O2 is a major
effector molecule in the
severe systemic T-cell sup-
pression in tumor patients.
Antigen-specific CD8C T-
cell tolerance, induced by
MDSCs, is 1 of the main
mechanisms of tumor
escape. Using in vivo mod-
els, Kusmartsev et al. showed
that MDSCs directly disrupt
the binding of antigen pep-
tide–MHC dimers to CD8C

T cells through nitration of
tyrosines in the TCR–CD8
complex caused by the
hyperproduction of ROS
and peroxynitrite during
direct cell–cell contact.36

These molecular changes
might affect the conforma-
tional flexibility of TCR-
CD8 and its interaction
with peptide-MHC dimers,

Figure 2. Molecules that mediate MDSC immunosuppressive ability. MDSCs suppress T cells, NK cells, and the dif-
ferentiation of myeloid cells via different mechanisms. The classic mechanism for MDSCs to inhibit T-cell prolifera-
tion and promoting Treg cell expansion is through arginine deprivation, nutrition depletion, or high levels of NO
production to inhibit T-cell function. Upregulation of HIF1-a expression under hypoxic conditions can enhance the
inhibitory function of MDSCs via the mentioned pathways. Signal transducer and activator of transcription 3 (Stat3),
a key factor in MDSCs, can increase ROS production by MDSCs, which inhibits T-cell proliferation and myeloid differ-
entiation. In addition, infected cells or tumors can produce GM-CSF and IL-6, both of which increase C/EBPb expres-
sion and promote MDSC differentiation. Furthermore, PGE2, IL-6, and M-CSF from inflammatory cells can produce
IDO, IL-10, and CO via regulating COX2 and HO-1 to prevent T-cell proliferation and myeloid cell differentiation.
However, MDSC-mediated NK cell inhibition occurs by TGFb or downregulation of the NK–cell-activating receptor,
Nkp30. IL, interleukin; M-CSF, macrophage colony-stimulating factor; PGE2, prostaglandin E2; COX-2, cyclooxygen-
ase-2; IDO, indoleamine 2,3-dioxygenase; HIF-1a, hypoxia-inducible factor-1a; NOS, nitric oxide synthase; Stat3, sig-
nal transducer and activator of transcription 3; ROS, reactive oxygen species; TGFb, transforming growth factor-b.
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eventually inducing T-cell anergy and tolerance.36 These findings
identify a new mechanism of T-cell tolerance associated with the
accumulation of MDSCs in cancer and other pathological
microenvironments.

Activated T cells are sensitive to Fas-mediated apoptosis,
which is important in the regulation of immune responses and
maintenance of self-tolerance. However, the immunosuppressive
effect of MDSCs on CD8C T cells is not dependent on the FasR
(CD95)-FasL pathway in mice immunized with viral immuno-
gens.34 On the other hand, MDSCs likely downregulate L-selec-
tin on naive T cells through their plasma membrane expression
of ADAM17 (a disintegrin and metalloproteinase domain 17),
an enzyme that cleaves the ectodomain of L-selectin.94 Therefore,
this study presents another process in which MDSCs inhibit
immunity by downregulating L-selectin on T cells and disrupting
T-cell homing to lymph nodes and sites of inflammation.

All in all, recent studies have identified several new mecha-
nisms of MDSC-mediated immunosuppression. These include
upregulation of COX-2 and PGE2, production of TGFb, deple-
tion of cystein, and downregulation of L-selectin expression on T
cells and induction of Tregs. It is apparent that the immunosup-
pressive function of MDSCs is highly pleiotropic and the associ-
ated pathways are highly dependent on the microenvironment.
Understanding the immunosuppressive mechanisms of MDSCs
will be essential to designing effective immunotherapies.

Conclusion

Numerous factors like LPS, M-CSF, GM-CSF, SCF, IL-6,
IFNg, IL-1b, VEGF, Hsp72, IL-13, C5a, and PGE2 induce
MDSC differentiation, while IL-4 and ATRA inhibit this

process. Stat, C/EBPb, Flt3-Flt3L、PPARg, SHIP, Ras, NF-kB,
COX-2, and Notch signaling pathways promote MDSC differ-
entiation and function, whereas IRF-8 and Smad3 downregulate
MDSC activity. The immunosuppressive function of MDSCs is
mainly mediated by NO, arginase, ROS, TGFb, IL-10, IDO,
HO-1, CO, and PGE2 as well as depletion of cysteine. It is clear
that we have limited knowledge of MDSCs and their biological
function. Comprehensive classification of MDSC subpopulations
may be essential to avoiding confusion and inconsistency, as
the current MDSCs are extremely heterogeneous. Understanding
the molecular regulatory networks of MDSC development and
function may offer novel therapeutic approaches for patients
with cancer, chronic infection, autoimmune disease, and
transplantation.
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