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Abstract

Background

The isolation with migration (IM) model is important for studies in population genetics and

phylogeography. IM program applies the IM model to genetic data drawn from a pair of

closely related populations or species based on Markov chain Monte Carlo (MCMC) simula-

tions of gene genealogies. But computational burden of IM program has placed limits on its

application.

Methodology

With strong computational power, Graphics Processing Unit (GPU) has been widely used in

many fields. In this article, we present an effective implementation of IM program on one

GPU based on Compute Unified Device Architecture (CUDA), which we call gPGA.

Conclusions

Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The

evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly

for research on divergence population genetics. The software is freely available with source

code at https://github.com/chunbaozhou/gPGA.

Introduction
The study of speciation at the population level, or divergence population genetics, is a major
focus of evolutionary research. Studies in this area typically involve sampling genes from popu-
lations and species of interest, then analyzing the patterns of genetic variation to gain insight
into the processes responsible for population divergence [1]. Estimates of population parame-
ters can be substantially improved by sampling multiple genetic markers, especially unlinked
loci. Large, multilocus or genomic data sets present a rich source of information for studying
population processes [2, 3].
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There are many methods can be applied to population genetics analyses, such as Linkage
disequilibrium, Gametic phase estimation method, Molecular diversity method and so no [4–
15]. But when apply to population subdivision analyses, above methods make one of two rather
extreme assumptions: (1) the diverged populations have equilibrium migration rate; (2) the
diverged populations have gene flow only before they descended from a common ancestral
population at some time in the past [16]. The isolation with migration (IM) model is a frame-
work that enables the divergence time and migration rates between two populations to be esti-
mated jointly from an alignment DNA sequences [16]. Using various parameters, IM model
can capture the effects of different factors that have a role in population divergence. IM pro-
gram applies the IM model to genetic data drawn from a pair of closely related populations or
species based on Markov chain Monte Carlo (MCMC) simulations of gene genealogies and
were originally described in reference [17]. IM program has been applied to a wide range of
questions in population genetics, speciation, and hybridization [18–21]. Population parameters
estimation in IM program is based on MCMCmethod. MCMCmethod is a random-walk algo-
rithm that allows sampling from the posterior distribution [22, 23]. MCMCmethod is a com-
putationally intensive method, so this places a limit on the application of IM program for
population genetics analyses.

GPU is designed specifically for graphics originally. With powerful computing capacity
using hundreds of processing units, General-purpose computing on graphics processing units
(GPGPU) is proposed. GPGPU is the utilization of a GPU to perform computation in applica-
tions traditionally handled by the central processing unit (CPU). The dominant proprietary
framework for GPGPU is CUDA which is a general purpose parallel computing platform and
programming model. We can leverage the parallel compute engine in NVIDIA GPU to solve
many complex computational problems in a more efficient way than on a CPU. GPU as a
coprocessor of CPU is a powerful supplement for the performance of the primary processor
and is popular in evolutionary biology now [24–26]. The function implementation on GPU
called kernel executed N times in parallel using N different CUDA threads, as opposed to the
function implementation on CPU executed only once. CUDA threads can be organized in one-
dimension, two-dimension and three-dimension for different applications. CUDA threads are
organized by blocks in GPU. GPU have its independent memory called global memory, and
there are also shared memory, local memory, constant memory and texture memory on GPU
which are similar to cache on CPU for performance promotion of different applications [27].

With strong computational power, GPU has been widely used in many fields. In this article,
we present an effective implementation of IM program on one GPU based on CUDA, which
we call gPGA. gPGA only implements two of the five mutation models in IM program, includ-
ing Hasegawa-Kishino-Yano (HKY) model [28] and Infinite Sites (IS) model [29]. Compared
with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results
demonstrate that gPGA allows datasets to be analyzed effectively and rapidly for research on
divergence population genetics.

Method

Isolation with migration model
IM model includes parameters for effective population sizes (N1, N2, and NA), rates of gene
flow (m1 and m2), time of population divergence (t) and proportion of the ancestral population
that forms one of the founding populations (s) (Fig 1). In IM model, the founding sizes of the
descendent populations are sNA and (1-s)NA respectively, where 0<s<1. Population parame-
ters are all scaled by the neutral mutation rate (u) in IM program [30].
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MCMCmethod
The posterior probability of parameter is calculated through Eq 1, where D denotes sequences,
T denotes phylogenetic tree, τ denotes branch lengths, and θ is the set of model parameters,
where θ = {θ1, θ2, θA,m1,m2, t}.

PðT; t; yjDÞ ¼ PðDjT; t; yÞ � PðT; t; yÞ
PðDÞ ð1Þ

The Metropolis-Hastings algorithm [22, 23] is used for MCMCmethod in IM program and
works as follows: where x denotes the current state of the Markov chain, x’ denotes the pro-
posed state, g(x!x’) denotes the conditional probability of proposing a state x’ given x.

Fig 1. Isolation with Migrationmodel [30]. The parameters are effective population sizes (N1, N2, and NA),
rates of gene flow (m1 and m2), time of population divergence (t) and proportion of NA that forms the founding
population of N1 (s). So the founding sizes of the descendent populations are sNA and (1-s)NA respectively,
where 0<s<1. Parameters are all scaled by the neutral mutation rate (u) in IM program, including θ1 = 4N1u,
θ2 = 4N2u, θA = 4NAu,m1 = m1 / u,m2 = m2 / u, t = t / u.

doi:10.1371/journal.pone.0135028.g001
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1. randomly propose a new state x’ according to g(x!x’)

2. the probability (R) of accepting the new state x’ is

R ¼ min 1;
PðDjx0Þ
PðDjxÞ �

Pðx0Þ
PðxÞ �

gðx0 ! xÞ
gðx ! x0Þ

� �
ð2Þ

3. Generate a random variable U which is uniformly distributed on the interval (0,1). If U<R,
accept the proposed state x’. Otherwise, continue with the current state x.

4. Go back to step 1).

This process is repeated for a sufficiently large number of iterations until there are sufficient
samples that have been drawn fromMarkov chain.

Likelihood computations
The likelihood evaluation is part of MCMCmethod and the details of likelihood computations
are shown in Fig 2. When given sequences (S), phylogenetic tree (T) and branch length (t), the
likelihood evaluation for HKY model in IM program is shown in Fig 2A. Firstly computing the
conditional likelihoods (CL) for all the non-leaf nodes in T, then computing the site likelihoods
(SL) for root node in T, finally computing the global likelihood (GL). Illustration of likelihood
evaluation for HKY model is shown in Fig 3A. There are N = 6 individuals for analyses, and the
length of S is n. The circles in shadow are the non-leaf nodes and the circles within red are the
leaf nodes in T. Firstly for node i (1�i�N), if the descendants (dl,dr) of i are leaf nodes then
computing CL(i,j) based on S(dl,j) and S(dr,j), if the descendants (dl,dr) of i are non-leaf nodes
then computing CL(i,j) based on CL(dl,j) and CL(dr,j) we have got already (1�j�n). When
computing CL(i,j), there are 4 situations depending on its descendants (leaf nodes or not). Fur-
ther, when its descendants are not leaf nodes, we can use CL computed last generation or CL

Fig 2. The flow chart of likelihood evaluation for HKYmodel and IS model. S denote the sequences with length n, T denote the phylogenetic tree, t
denote the branch length, π denote the base frequencies of nucleotide, u denote neutral mutation rate, N denote the number of individuals for analyses. (A)
CL denote conditional likelihood for non-leaf node in T, SL denote site likelihood for root node in T, f(S | x’) denote global likelihood. (B)M denote the number
of mutations, B denote branch length, BT denote total branch length for T, f(S | x’) denote global likelihood.

doi:10.1371/journal.pone.0135028.g002
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computed now. So there are 9 situations for computing CL depending on its descendants and
we define 9 GPU kernels for computing CL also. Then computing SLj = π × CL(root, j) 1�j�n.

Finally computing GL through f ðSjx0Þ ¼
X
n

SLj.

When given sequences (S), phylogenetic tree (T) and branch length (t), the likelihood evalu-
ation for IS model is shown in Fig 2B. Firstly computing the number of mutations (M) for all
sites in S, computing the branch length (B) for all sites in S and computing the whole branch
length (BT). Then computing GL. Illustration of likelihood evaluation for IS model is shown in
Fig 3B. There are N = 6 individuals for analyses, and the length of S is n. The circles in shadow
are the non-leaf nodes and the circles within red are the leaf nodes in T. Firstly computing BT
for all the nodes in T and for each site j (1�j�n) of S computingMj and Bj through all the
nodes in T. Only thing to note here is that the computational process breaks immediately when
there are more than one mutation at a site under the topology and return 0 as GL. Then com-

puting GL through f ðSjx0Þ ¼ BT � uþ
X
n

logðBj � uÞ �Mj �
X
n

logðMjÞ.

Fig 3. Illustration of likelihood evaluation for HKYmodel and ISmodel. N denote the number of individuals in population for analyses and n denote the
length of sequences. The circles in shadow are the non-leaf nodes and the circles with red number are the leaf nodes in phylogenetic tree. (A) S(i,j) denote jth
base of ith sequence, CL(i,j) denote conditional likelihood of jth base for ith node, SLj denote site likelihood for jth base, f(S | x’) denote global likelihood. (B) S
(i,j) denote the jth base of ith sequence,Mj denote the number of mutations of jth base, Bj denote branch length of jth base, ti denote branch length of ith node,
BT denote total branch length for phylogenetic tree, f(S | x’) denote global likelihood.

doi:10.1371/journal.pone.0135028.g003
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The likelihood evaluation for HKY model and IS model are sensitive to the length of
sequence through above analyses, so we focus HKY model and IS model rather than other
models in IM program. From Fig 3 we also known that the computational order for node in T
for HKY model is concerned, and this is unconcerned for IS model.

MCMCmethod on GPU
Because of the different computational process for HKY and IS model in IM program, we
designed different computational process for them on GPU. In order to accelerate the compu-
tation of likelihood using shared memory on GPU and reduce the communication cost
between CPU and GPU, we acquire the block likelihoods (BL) for each block on GPU and
transfer BL from GPU to CPU for GL computation. GL is the sum of SL, so we sum part of GL
based on shared memory for each block on GPU and this is BL.

Illustration of likelihood evaluation for HKY model on GPU is shown in Fig 4A. Consider-
ing computational order for nodes in T, we scheduled the order for nodes before computing
likelihood on GPU. So T and t does not need to transfer to GPU. MCMCmethod for HKY
model on GPU is as follows:

1. Initialization stage

1.1. Allocate GPU global memory for S

1.2. Transfer S from CPU memory to GPU global memory and transfer π from CPUmem-
ory to GPU constant memory

1.3. Set g = 0

2. While (g<maximum generation) do

2.1. Propose a new T

2.2. For each non-leaf node i in T (1�i�N) do

2.2.1. Call kernel (1–9) to compute CLði; �Þ ¼
X
n

CLði; jÞ on GPU and store it on GPU

global memory

Fig 4. Illustration of likelihood evaluation for HKYmodel and IS model on GPU.CPUmemory denote
the RAM of computer. (A) S denote the sequences used for analyses, π denote the base frequencies of
nucleotide, CL denote the conditional likelihood for non-leaf nodes in phylogenetic tree, CL(root) denote the
conditional likelihood for root node in phylogenetic tree, SL denote the site likelihoods for root node, BL
denote the block likelihood for root node andGL denote the global likelihood. (B) S denote the sequences
used for analyses, T denote the phylogenetic tree, t denote the branch length,M denote the number of
mutations, BT denote total branch length for phylogenetic tree, SL denote the site likelihoods for root node,
BL denote the block likelihood for root node andGL denote the global likelihood.

doi:10.1371/journal.pone.0135028.g004
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2.3. Call kernel (10) to compute SL and BL using GPU shared memory and store BL on
GPU global memory

2.4. Transfer BL from GPU global memory to CPU memory

2.5. Compute GL on CPU

2.6. Accept or reject T

Illustration of likelihood evaluation for IS model on GPU is in Fig 4B. MCMCmethod for
IS model on GPU is as follows:

1. Initialization stage

1.1. Allocate GPU global memory for S

1.2. Transfer S from CPU memory to GPU global memory

1.3. Set g = 0

2. While (g<maximum generation) do

2.1. Propose a new T

2.2. Compute BT for T

2.3. Transfer T, t and BT from CPU memory to GPU constant memory

2.4. Call kernel (1) to computeMj (1�j�n) using GPU shared memory and store it on GPU
global memory

2.5. Call kernel (2) to compute BL using GPU shared memory and store BL on GPU global
memory

2.6. Transfer BL from GPU global memory to CPU memory

2.7. Compute GL on CPU

2.8. Accept or reject T

When BL for IS model on GPU is computed completely, we continue to check the number
of mutations for each site and decide to if return 0 or not.

Communication between CPU and GPU
For HKY model. Sequences transfer to GPU only once. If there are L locus data for analy-

ses and there are N individuals for each locus data with sequence length n, the communication
cost for sequences is L×N×n. In each generation, MCMCmethod proposes a new phylogenetic
tree with new branch length. However, we scheduled the nodes of phylogenetic tree before call-
ing kernels to compute conditional likelihoods. So phylogenetic tree and branch length only
exist on CPU. π is fixed all the time, so we transfer π to GPU only once. The communication
cost for π is L×4. The communication cost for site likelihoods is n. The threads are organized
by blocks on GPU. In order to reduce the communication cost, we sum the site likelihoods in
each block and acquired block likelihoods. The block likelihoods are only sensitive to the num-
ber of blocks on GPU. Further the number of blocks is far less than the length of sequences.

For IS model. Sequences transfer to GPU only once. It is the same as HKY model, the
communication cost for sequences is L×N×n. In each generation, MCMCmethod proposes a
new phylogenetic tree with new branch length. So we need transfer them to GPU in each gener-
ation. The communication cost for phylogenetic tree is 3××(2×N-1) for the node and its two
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descendants. The communication cost for branch length is N-1. It is the same as HKY model,
we only transfer block likelihoods from GPU to CPU.

Memory usage on GPU
Illustration of multiple memory spaces on GPU is shown in Fig 5. Global memory, local mem-
ory, constant memory and texture memory are all on the GPU card. Because there are on-chip
caches for constant memory and texture memory, they have much higher bandwidth and
much lower latency than local memory and global memory. Shared memory is on-chip, so it
has much higher bandwidth and much lower latency than local memory and global memory.
For performance promotion, the constant memory and shared memory are important for
gPGA. Constant memory and shared memory are all far less than global memory, so the usage
of them is careful. The content in constant memory is unchanged after kernel launch, so the
read-only data can store in it. The shared memory is shared for all the threads in the same
block on GPU, so the block-local data can store in it.

For HKY model. Because memory space of sequences and conditional likelihoods are all
far more than the size of shared memory and constant memory, so they are in global memory.
π is unchanged all the time and is frequently read-only data on GPU, so π is in constant mem-
ory for performance promotion. Global likelihoods are the sum of site likelihoods for root
node in phylogenetic tree, we sum the site likelihoods in the same block based on shared mem-
ory and acquired block likelihoods for performance promotion.

For IS model. Because memory space of sequences are far more than the size of shared
memory and constant memory, so they are in global memory. Phylogenetic tree, branch length
and total branch length are unchanged and frequently read-only data on GPU in each genera-
tion, so they are in constant memory for performance promotion. Because of the size of shared
memory and constant memory is neither enough for numbers of mutations, so they are in

Fig 5. Illustration of multiple memory spaces on GPU.Global memory, local memory, constant memory, and texture memory are all no GPU card and
outside GPU chip. There are caches for constant and texture memory inside GPU chip. Shared memory is shared for each multiprocessor inside GPU chip.

doi:10.1371/journal.pone.0135028.g005
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global memory also. It is the same as HKY model, we acquired block likelihoods for perfor-
mance promotion.

Results and Discussion
We evaluated gPGA on the platform with Nvidia TESLA K20m GPU, the details are listed in
Table 1.

MCMCmethod is sensitive to the sequence length used. So we firstly simulate datasets with
the same population size and different sequence length (1000, 6000, 11000, 16000) for one
locus data. The simulation datasets for HKY model are simulated by Seq-Gen [31] based on
the gene tree that is built byms [32]. The parameters forms are the same with reference [33]
except the population size. The simulation datasets for IS model are simulated based on the
datasets for HKY model by ourselves. All the simulation datasets are with the same population
size 190, population 1 has 150 individuals and population 2 has 40 individuals.

We performed three replicate runs of IM and gPGA for each simulation dataset and the
average execution time is calculated. The burn-in generation and MCMC generation are both
10,000. The upper bounds of the population mutation parameters for population 1, population
2 and ancestor population are all 10. Maximummigration rate from population 1 to population
2 and maximum migration rate from population 2 to population 1 are all 10. Maximum time
of population splitting is 10. Then we got the speedups for likelihood evaluation and whole
computational process shown in Fig 6. The speedup is defined as follows:

Sp ¼
Ts

Tp

ð3Þ

where: Sp is the speedup for gPGA, Ts is the execution time of IM program using single CPU,
and Tp is the execution time of gPGA using single CPU and single GPU. The implement time
of different evaluation for IM program are shown in Table 2, it is the benchmark for the
comparison.

Fig 6 suggests that gPGA achieves increasing speedup as sequence length increases. Accord-
ing to Amdahl's Law, potential speedup is defined by the fraction of code that can be paralle-
lized [34] as follows:

Sp ¼
1

P
N
þ S

ð4Þ

Where: Sp is the speedup for gPGA, P is fraction that can be parallelized, S is fraction that can
not be parallelized and N is the number of processors used. The likelihood evaluation is the
crucial computational part of IM program and it is also the fraction that can be parallelized.
This is consistent with the speedups shown in Fig 6. Likelihood evaluation for HKY model is
more sensitive to the sequence length than IS model. According to the description of computa-
tional process for these two model above, likelihood evaluation for IS model may break off in
IM program. But likelihood evaluation for IS model in gPGA is computed completely and then

Table 1. The host and device of platform.

Host Device

CPU 2*Intel Xeon E5-2640 (6 cores, 2.50GHz) GPU 2*Nvidia TESLA K20m GPU

Memory 8*4GB DDR3 1333MHz Memory 5G

Operating system Red Hat Enterprise Linux Server release 6.2 Driver NVIDIA Driver version 4.2

doi:10.1371/journal.pone.0135028.t001
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Fig 6. Speedups of gPGA for different sequence length n on GPU, n2{1000, 6000, 11000, 16000}.
doi:10.1371/journal.pone.0135028.g006

Table 2. Implement time (Second) of different evaluation for IM program.

model sequence length generation locus Markov chain

likelihood whole likelihood whole likelihood whole likelihood whole

HKY 409 447 409 447 409 447 808 1600

2505 2696 2246 2450 845 922 4792 9321

4608 4948 20763 22695 2284 2457 8882 17418

6871 7352 204007 222711 4582 4926 13193 25782

IS 208 218 208 218 208 218 406 856

1181 1216 1132 1166 282 298 2441 5009

2269 2329 10759 11028 675 708 4458 9116

3248 3333 104942 107578 1244 1309 6466 13128

Sequence length denotes implement time of different sequence length.

Generation denotes implement time of different MCMC generation.

Locus denotes implement time of different number of locus data.

Markov chain denotes implement time of different number of Markov chain.

Likelihood denotes implement time of likelihood evaluation.

Whole denotes implement time of IM program.

doi:10.1371/journal.pone.0135028.t002
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we continue to check number of mutations for each site in order to break off, so gPGA slow
than IM program in this situation. So in Fig 6, speedups for IS model are less than HKY model.

We secondly evaluate the influence of different MCMC generation for gPGA. The simulated
datasets are that we have simulated above. They are with the same sequence length (1000) and
population size (190) for one locus data. The speedups are shown in Fig 7, and the speedup is
insensitive to the MCMC generation. The trends of speedups for HKYmodel and IS model are
the same with speedups for sequence length 1000 in Fig 6. For stationary probability distribution,
IM program and gPGA need sufficient MCMC generations. gPGA has stable performance when
MCMC generation increasing. Performance of HKYmodel is more stable than IS model. This is
relative to break off in likelihood evaluation for IS model we have mentioned in method section.

We thirdly evaluate the influence of different number of locus data. The simulated datasets
are combined by datasets we have simulated above. They are with the same sequence length
(1000) and population size (190) for different number of locus data (1, 2, 4, 8). The speedups
are shown in Fig 8, and the speedup is insensitive to the number of locus data (2, 4, 8). Speed-
ups for IS model decline for two loci data and slightly fluctuate after that. It is the same as Fig 7,
gPGA has stable performance when number of locus data increasing. Performance of HKY
model is more stable than IS model. This is relative to break off in likelihood evaluation for IS
model we have mentioned in method section.

To reduce the problem of sampling from local optima, the Metropolis-coupled MCMC (MC3)
method [35] are used for IM program. The MC3 method implements additional Markov chains

Fig 7. Speedups of gPGA for different MCMC generation g on GPU, g2{10000, 100000, 1000000, 10000000}.
doi:10.1371/journal.pone.0135028.g007
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with various degrees of ‘heating’. When add one Markov chain, the computation cost for IM pro-
gram will be twice. So we also evaluate the speedups for different number of Markov chains. Fig 9
suggests that gPGA achieves almost the same speedup when using twoMarkov chains. For good
mixing and convergence, IM program and gPGA need increase number of Markov chains. In our
previous work, we have applied IM program effectively on multiple CPU cores, even on cluster
[36]. In future, we will apply gPGA to multiple GPUs on cluster for better speedup.

There are none optimization for IM program and the CPU code of gPGA for our evaluation.
So the same amount of improvement on the realized computing time may not always be
achievable with a different implementation, such as different platform used, different optimiza-
tion of program and different parameters of program.

The major limitation of IM program is the restriction to samples from two populations, and
it has been extended to multiple populations that have a known phylogenetic history known as
IMa2 [37]. The IM-based applications are all based on bayesian inference, so the likelihood
evaluation is essential. The evaluation of gPGA has shown that likelihood can be calculated effi-
ciently on one GPU, so we have strong confidence that GPU-based implementation of IM-
based applications would achieve good performance.

Conclusions
We present an effective implementation of IM program on one GPU based on CUDA, which
we call gPGA. gPGA implements two of the five mutation models in IM program, HKY model

Fig 8. Speedups of gPGA for different number of locus data l on GPU, l2{1, 2, 4, 8}.
doi:10.1371/journal.pone.0135028.g008
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and IS model. We evaluated gPGA for different sequence length, different MCMC generation,
different number of locus data and different number of Markov chains. gPGA is sensitive to
sequence length, but is insensitive to MCMC generation, number of locus data and number of
Markov chains. The experiments suggest that a single GPU can improve the performance of
IM program by up to a factor of roughly 52.

We aim to solve the technical problems to speedup the data analyses. After examination of
the additions and improvements of IMa2 program to IM program, we found the latter does not
change many codes, which were found to be bottlenecks of the computation. So, we prefer to
use the earlier version with simple models, parameters and distribution to focus on the effi-
ciency. However, Dr. He, et al. [18] found results by both MPI and GPU versions fits well with
what he concluded from biology. With experiences from this experiment on IM program, we
will try to parallelize the IMa program or IMa2 program. Also, we will make gPGA effectively
implementation on multiple GPUs including the parallelization of Metropolis-coupled chains
for MC3 method.
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