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An emerging paradigm in analysis of geographic dif-
ferentiation and speciation is integration of phylogeo-
graphic analyses and paleo-distributional projections to 
gain insight into these complex historical processes 
(Peterson, 2009). This approach hinges on the idea of a 
relatively stable landscape, across which species are 
distributed, with occasional dispersal events or climate-  
driven range shifts that open possibilities for population 
isolation and speciation (Smith et al., 2014). To date, the 
integration has been employed largely in single-lineage 
studies, such that evaluations of its effectiveness, ca-
veats to its use, and appreciation of its strengths and 
weaknesses have been difficult (see early examples in 
Hosner et al., 2014, Lim et al., 2011, Peterson and Nyári, 
2007). In this Special Column, we have assembled a 
group of 12 authors applying this methodology to bird 
taxa distributed across East and Southeast Asia and 
nearby islands. In this set of papers, we examined 10 
avian lineages (species or complexes of species) using 
similar molecular and paleo-geographic analytical ap-
proaches, creating a rare comparative dataset by which 
to evaluate generalities underlying the process of popu-
lation divergence and assess region-wide commonalities 
to understand historical processes impacting these li-
neages. 

Highlights of the individual chapters are several. For 
both Cyanoderma ruficeps and Pomatorhinus spp., 
population differentiation appeared to reflect refugial 
conditions during the Last Interglacial (LIG) rather than 
the Last Glacial Maximum (LGM; Hosner et al., 2015, 
Reddy and Nyári, 2015), which provides further support 

for deeper time origins (i.e., before the Late Pleistocene) 
of Asian bird species (Lei  et al., 2015, Zhao et al., 
2012), a pattern that has been evident in other studies, 
even those without a paleo-reconstruction element (e.g., 
Lim et al., 2011, Sheldon et al., 2009, Zou et al., 2007). 
Population divergence of Copsychus saularis and Me-
galaima haemacephala appears to have been driven by 
combinations of unsuitable climatic conditions and sea 
channels (Lim et al., 2015); similarly, Aegithalos con-
cinnus and Garrulax elliotii reflected strong effects of 
isolation via climate and topography, effectively expe-
riencing long-term in situ diversification (Quan et al., 
2015), as proposed previously by Qu et al. (2014). 

Scanning across these focal lineages, which more or 
less coincide distributionally across East and Southeast 
Asia, we noted several commonalities and contrasts. (1) 
Diverse levels of genetic differentiation—Species range 
from dramatically differentiated across Southeast Asia, 
as in the cases of Cyanoderma ruficeps and Pomatorhi-
nus spp., down to no appreciable differentiation (at least 
in terms of mitochondrial DNA) whatsoever, as with 
Spizixos semitorques. (2) Distinct island populations—  
Marked differentiation of populations on Hainan and 
Taiwan islands is apparent in four of the five species for 
which island populations exist and were sampled, sug-
gesting that levels of endemism on those islands should 
be reconsidered more generally (Wu et al., 2012). (3) 
Frequent mixing and population overlap—Areas on the 
mainland of East and Southeast Asia frequently show 
what appears to be mixing of differentiated populations, 
especially in south-central China (notable in Cyano-
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derma ruficeps, Paradoxornis webbianus, Copsychus 
saularis, and Pomatorhinus reconditus). These charac-
teristics appear to be shared across the set of species 
analyzed, although including still more lineages might 
flesh out their frequency and the details of their distri-
bution. 

In the paleo-distributional projections, interesting 
details were noted in each lineage analyzed, but some 
difficulty was encountered in interpreting complex pat-
terns and distinguishing interesting signals from con-
fusing noise. Last Glacial Maximum paleo-distribution 
disjunctions were noted in Aegithalos concinnus and 
Garrulax elliotii (both montane species), but Last Inter-
glacial disjunctions were perhaps more common (e.g., 
Cyanoderma ruficeps, Pomatorhinus spp.). This mixing 
of different refugial time periods had been noted for this 
region in previous studies (Peterson and Ammann, 
2013). These results also suggest more complexity in 
historical biogeographic processes than has been noted, 
for example, in similar analyses in the Amazon Basin 
(Bonaccorso et al., 2006; Ingenloff and Peterson, 2015; 
Peterson and Nyári, 2007). 

An important point in exploring these possibilities in 
analysis and interpretation is the limited and circum-
scribed nature of the paleo-distributional projections. 
That is, such projections are presently limited to tem-
poral ‘snapshots’ for the present-day, mid-Holocene, 
LGM, LIG, and (soon) Pliocene time periods (Lima-  
Ribeiro et al., 2015); although they likely illustrate ex-
treme or near-extreme distributional situations in the 
past million or so years, no guarantee exists that time 
periods crucial to a given evolving lineage will coincide 
with these points in time for which we have climate data. 
For instance, in the Amazon Basin, the trumpeters 
(Psophia spp.) appear to have differentiated in response 
to time periods predating the Pleistocene but requiring 
more detail than the limited Pliocene data that are 
available (Ribas et al., 2012). As such, a frequent result 
is that the same pattern or level of disjunction in pa-
leo-potential distributional areas may or may not be 
relevant to different lineages, which raises complexities 
in interpretation. Understanding paleo-distributional 
projections is further complicated by the coarse spatial 
resolution that characterizes all climate model outputs 
available for these studies (Lima-Ribeiroet al., 2015). 

Southeast Asian bird lineages, at the same time, clear-
ly show more complexity in degree of population diffe-
rentiation than those in the Amazon Basin, where deep 
differentiation has been a constant among many studies 
(e.g., Aleixo, 2004; Aleixo, 2006; Aleixo et al., 2013). 

That is, among the 10 taxa treated in this set of studies, 
differentiation ranged from essentially nil (e.g., Spizixos 
semitorques) to deep (e.g., Pomatorhinus spp.). The 
relative frequency of deep mitochondrial differentiation 
within and among continuously distributed populations 
(e.g., Cyanoderma ruficeps) likely reflects climate-   
driven, geographic processes that perhaps characterized 
the Pleistocene in the region (see, e.g., Alström and 
Olsson, 1999; Martens et al., 1999). 

The resolution that is possible in studies such as those 
in this issue is constrained further by sampling: paleo-  
distribution alanalyses by availability of vouchered lo-
cality data and sufficient temporal snapshots of climatic 
conditions, and genetic studies again by availability of 
appropriate samples from key sites, and, at least so far, 
by the limited number of genetic markers employed. 
Future studies will benefit from increased access to 
geo-referenced primary occurrence data (e.g., via Vert-
Net and GBIF), an improved partnership between the 
biogeography and climate modeling communities, con-
tinued detailed scientific collecting of high-quality sam-
ples from wild populations, and inclusion of more ge-
netic markers. The large numbers of loci available from 
next-generation sequencing methods (Faircloth et al., 
2012; Miller et al., 2007) will allow exploration of the 
population-genetic processes occurring in zones of con-
tact between differentiated populations.   
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