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ABSTRACT Accurate assessment of insect pest establishment risk is needed by national plant protec-
tion organizations to negotiate international trade of horticultural commodities that can potentially carry
the pests and result in inadvertent introductions in the importing countries. We used mechanistic and
correlative niche models to quantify and map the global patterns of the potential for establishment of
codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone
fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLI-
MEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative
model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from
both models conformed well to the current known distribution of codling moth. None of the models
predicted suitable environmental conditions in countries located between 20�N and 20�S potentially
because of shorter photoperiod, and lack of chilling requirement (<60 d at �10�C) in these areas for
codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where
codling moth currently does not occur but where its preferred host species (i.e., apple) is present.
Average annual temperature and latitude were the main environmental variables associated with codling
moth distribution at global level. The predictive models developed in this study present the global risk of
establishment of codling moth, and can be used for monitoring potential introductions of codling moth
in different countries and by policy makers and trade negotiators in making science-based decisions.

KEY WORDS biosecurity, species distribution modeling, pest risk analysis, insect pest, quarantine
pest

The codling moth, Cydia pomonella (L.) (Lepidoptera:
Tortricidae), is one of the most destructive and eco-
nomically important fruit pests of apples, its preferred
host, as well as walnuts, pears, apricots, and plums in
most fruit-growing temperate regions of the world
(Barnes 1991, Beers et al. 1993, Neven 2012). It is a
pest of quarantine concern in several countries and re-
gions where it currently does not occur (e.g., Colombia,
Japan, South Korea, and Chinese Taiwan). Codling
moth has the potential to cause 100% infestation in
untreated apple orchards (Beers et al. 2003). Other
tree fruits such as pears (Pyrus spp.) and walnuts are
less susceptible to codling moth infestation (Barnes
1991). Codling moth is considered to have originated
somewhere in eastern Eurasia and was inadvertently
introduced across the world through infested fruits
(Lloyd 1960); it was introduced to North America
around 1750 (Slingerland 1898).

Codling moth is an internal feeding pest and its biol-
ogy is very well-studied because of its high economic
importance (Neven et al. 2000, Neven 2012). It is a
multivoltine species with a facultative diapause, and
has the ability to adapt to diverse climatic conditions.
This pest has one to five generations per year with
fewer generations further away from the equator
(Anonymous 2014a). C. pomonella has five larval instars
and overwinters under the tree bark or at the base of
the tree as fifth-instar diapausing larvae (Weitzner and
Whalon 1987). Diapause is triggered primarily by
shorter day lengths in late summer (Riedl 1983; Neven
2012, 2013). The critical photoperiod (i.e., the day
length at which �50% of the population enters dia-
pause) for codling moth varies from 13.5 to 15.5 h
of day light (Shel’deshova 1967, Anonymous 2014b).
C. pomonella also has chilling requirement of <60 d at
�10�C temperature to break diapause (Neven 2013).

International trade of fruits, packing materials, and
other commodities (e.g., seeds and plant parts) can po-
tentially carry pests and cause inadvertent introductions
in importing countries where the pest is not estab-
lished. Therefore, the World Trade Organization
(WTO) requires its members to establish national Sani-
tary and Phytosanitary Measures (SPS; WTO 2014)
measures consistent with international standards (WTO
2014). The plants, insects, and disease pathogens
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regulated under SPS measures cost �US$80 billion to
the U.S. economy (Pimentel et al. 2000). Most often in-
formation on the establishment potential of a quaran-
tine pest for the importing countries is insufficient to
develop biologically and ecologically accurate pest risk
analyses; countries impose quarantine measures simply
based on host species’ presence (Willett et al. 2009).
Therefore, assessment of the potential risk of establish-
ment of pest species such as codling moth in the im-
porting countries can be a valuable tool for trading
partners’ national plant protection and quarantine offi-
cers, and policy makers in designing import/export
rules and regulations, and negotiating trade. Existing
phytosanitary restrictions may be eased or re-evaluated
if the suitable environmental conditions do or do not
exist in the importing countries.

Climate is one of the most important determinants
of the distribution of phytophagous insects and their
host plants and natural enemies (Kiritani 2006, Tuda
et al. 2006). Ecological niche models (ENMs) can be
used to quantify and map the bioclimatic potential of
insect pests and their host plants. ENMs are increas-
ingly being used for assessing the potential for estab-
lishment of insect pests and other species of concern
(Rafoss and Saethre 2003; Li et al. 2009; De Meyer
et al. 2010; Evangelista et al. 2011; Lozier and Mills
2011; Kriticos et al. 2012a; Kumar et al. 2014a,b,c).
These models can be built using either physiological in-
formation from experimental laboratory or field studies
(mechanistic models) or by integrating species occur-
rences (presence and presence–absence or abundance)
with spatial environmental variables of the study area
(correlative models). The mechanistic ENMs include
processes that are directly related to fundamental niche
of the species, whereas the correlative ENMs model
species–environment relationship in the study area
(Elith 2015). The correlative models, if not fitted ap-
propriately, may not perform well when projected to
novel environments (Webber et al. 2011, Owens et al.
2013). However, recent studies have shown that predic-
tive performance of these models, when projected to
novel environments can be significantly improved if
they are fitted with hypothesis-driven, biologically
meaningful variables with moderate level of complexity
(Kumar et al. 2014a,b). Both types of niche models
have their advantages and disadvantages (Dormann
et al. 2012).

Despite the high economic importance of codling
moth to fruit growers worldwide, global establishment
risk maps for codling moth are not available except a
few regional studies (e.g., Yang (2008), and Liang et al.
(2010) for China; and Rafoss and Seathre (2003) for
Norway). Our objectives were to 1) assess the global
potential risk of establishment of codling moth using
two different ENMs, and 2) identify environmental
drivers associated with codling moth potential
distribution.

Materials and Methods

Occurrence Data. Species presence data (i.e., sites
where codling moth occurred) were collected from

published articles, books, reports, and online databases
(Supp Table 1 [online only]). We also digitized apple
orchard locations in the United States and other coun-
tries where codling moth is known to occur, and used
these as potential codling moth presence locations
(Beers et al. 2003, Knight 2008), except Japan and
South Korea. The county-level codling moth occur-
rence records for the continental United States
reported by National Agricultural Pest Information Sys-
tem (NAPIS; http://pest.ceris.purdue.edu/index.php)
were replaced by apple orchard coordinates. The Goo-
gle Earth (https://www.google.com/earth/) and the Goo-
gle Maps (https://www.google.com/maps/preview) with
the satellite imagery in the background were used to
locate apple orchards where codling moth was reported
to occur in cases where exact geographic coordinates
were not available from the published studies. C.
pomonella occurrence data from China were collected
from the old reports and the National Information Dis-
tribution of Quarantine Pests issued by the Chinese
Department of Agriculture in 1996. Some of the
infested locations occurring between 1987 and 2005
were provided by the Provincial Plant Protection and
Quarantine Services. Data from 2005 to 2012 were
obtained from the National Codling Moth Monitoring
Workshop reviews. In total, 1,055 occurrence records
from 35 countries across the world were collected.
These records were reduced to 971 after removing
duplicates and applying “spatial filtering” using
SDMToolbox (Brown 2014; http://sdmtoolbox.org/) to
reduce spatial autocorrelation; filtered occurrence data
points were >10 km apart (Veloz 2009, Boria et al.
2014). This distance is higher than the maximum dis-
persal distance (8 km) reported for male codling moth
in experiments conducted by Mani and Wildbolz
(1977), in which the majority of individuals (90%) were
recaptured within 1 km from the release point.

Niche Modeling. From a large suite of available
correlative and mechanistic niche models (Franklin
2009, Peterson et al. 2011), we selected two commonly
used models—MaxEnt and CLIMEX. These models
have been found very effective in predicting insect
pests’ establishment risk (Lozier and Mills 2011; Kriti-
cos et al. 2012a; Kumar et al. 2014a,b,c).

MaxEnt Niche Model. Our first niche model was a
correlative maximum entropy-based model or MaxEnt
(version 3.3.3k; Phillips et al. 2006, Elith et al. 2011).
We chose the MaxEnt model because it is a presence-
background model, making it most suitable for our
codling moth occurrence data; absence data at global
scale for codling moth were not available. The MaxEnt
model has been widely used in modeling potential dis-
tributions of insect pests (Evangelista et al. 2011; Loz-
ier and Mills 2011; Kumar et al. 2014a,b,c) and other
species of concern (Kumar et al. 2009, Li et al. 2009,
De Meyer et al. 2010, Evangelista et al. 2011). MaxEnt
integrates species occurrences with background data
(i.e., randomly selected points) from spatial environ-
mental variables representing different environmental
gradients in the study area and generates probability of
species’ presence (Phillips et al. 2006). It identifies
areas that have conditions most similar to species’
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current known occurrences and ranks them from 0
(unsuitable or most dissimilar) to 1 (most suitable or
most similar). MaxEnt generates a set of feature classes
(i.e., linear [L], quadratic [Q], product [P], threshold
[T], and hinge [H]) using environmental variables. It
uses a regularization multiplier (RM) to reduce the
number of parameters and thus automatically controls
the model complexity (Phillips and Dudik 2008, Elith
et al. 2011). The default RM value is 1; a smaller value
of RM (�1) may potentially overfit the model and pro-
duce more restricted distribution whereas a higher
value (>1) would result in simpler models with less dis-
criminating power and broader species potential distri-
bution (Phillips et al. 2006). Therefore, tuning of
MaxEnt model settings has been suggested for select-
ing an optimal model to enhance predictions (Shche-
glovitova and Anderson 2013, Boria et al. 2014).

Environmental Data Layers. Nineteen bioclimatic
variables’ data layers were acquired from the World-
Clim dataset (Hijmans et al. 2005; http://www.world
clim.org/) at 2.5 arc-minutes spatial resolution
(�4.5 km). These bioclimatic variables were generated
using monthly temperature and precipitation data aver-
aged over a period from �1950 to 2000, and represent
average temperature and precipitation, seasonal varia-
bles, and climatic extreme indices (Hijmans et al.
2005). These variables were chosen based on their
potential biological relevance to codling moth and their
use in previous insect pest niche modeling studies (e.g.,
Evangelista et al. 2011; Lozier and Mills 2011; Kumar
et al. 2014a,b). Earlier studies have shown that includ-
ing species-specific phenology variables improved the
correlative niche model predictions (Sambaraju et al.
2012; Kumar et al. 2014a,b). Therefore, we also consid-
ered “degree days at average temperature >10�C” as a
potential predictor in niche models because 10�C is
the lower temperature threshold for development of
codling moth populations (Shel’deshova 1967); it was
calculated in Arc Map (Environmental Systems
Research Institute [ESRI] 2013) using monthly tem-
perature data layers. A latitude layer was also included
as one of the environmental variables because it is
often used as a surrogate for length of daylight because
the number of daylight hours varies with latitude and
day of the year (Enquist and Niklas 2001, Jetz et al.
2008, Dadvand et al. 2011). For example; a 10� shift in
latitude to the North resulted in an increase of 1.25 h
in the critical photoperiod (Riedl and Croft 1978). The
length of daylight has an immense influence on codling
moth diapause and overall physiology (Shel’deshova
1967; Riedl and Croft 1978; Riedl 1983; Willett et al.
2009; Neven 2012; 2013). Latitude was an important
predictor of codling moth average first spring emer-
gence in North America (Jones et al. 2013). Thus, we
utilized latitude to represent day length and WorldClim
bioclimatic variables to represent climate-driven envi-
ronmental conditions.

Variable Selection, Model Settings, and Model Eval-
uation and Validation. All environmental variables
were examined for cross-correlation (Pearson correla-
tion coefficient, r) and highly correlated variables
(jrj> 0.75) were dropped (Supp Table 2 [online only])

to account for multicollinearity (Dormann et al. 2013).
The decision to drop or retain a variable was based on
its biological relevance to codling moth, its relative pre-
dictive power, and ease of interpretation. Latitude was
not dropped even if it had high correlation with mean
annual temperature (bio1; r¼ 0.93) because of its
greater indirect influence on codling moth diapause.
The total number of variables considered in MaxEnt
model was reduced to 10 of 21.

A bias surface for MaxEnt models was generated
using SDMToolbox to account for potential sampling
bias in the occurrence data because bias in the data
can negatively affect niche models’ performance
(Phillips 2008, Syfert et al. 2013). Fifty thousand ran-
dom background points were automatically drawn by
MaxEnt from all terrestrial areas of the world; the
background extent was defined based on the biotic–
abiotic–mobility framework suggested by Soberon
and Peterson (2005). The “fade-by-clamping” proce-
dure was used to avoid extrapolations beyond the envi-
ronmental range of the training data (Owens et al.
2013). The percent contributions of different variables
and jackknife features in MaxEnt were used to examine
relative importance of different environmental
predictors.

Initial MaxEnt model was run with default settings,
and later, overfitting experiments were conducted with
different combinations of feature classes (e.g., LQP,
LQPH, and LQPTH) and RM values (ranging from 1
to 3). The complex model generally resulted in very
complex and biologically nonsensical response curves,
and were discarded (Fig. A3; Kumar et al. 2014b). The
optimal model with eight predictor variables was
selected using the Bayesian information criterion (BIC)
calculated using ENMTools (Warren et al. 2010). We
used BIC for model selection instead of Akaike’s infor-
mation criterion (AIC) because BIC has higher penalty
for model complexity than AIC.

Performance of MaxEnt models was evaluated using
threshold-dependent and threshold-independent met-
rics. MaxEnt generated area under the receiver operat-
ing characteristic (ROC) curve (AUC; Phillips et al.
2006) and partial AUC ratio (pAUC; Peterson et al.
2008) were used as threshold independent measures of
model performance. The AUC values vary from 0 to 1;
0.5 shows model performance not better than random,
values <0.5 worse than random; 0.5–0.7 indicate poor
performance; 0.7–0.9, reasonable or moderate perform-
ance; and 0.9, high performance (Peterson et al. 2011).
The 10-fold cross-validation procedure in MaxEnt was
used and averaged test AUC values (AUCcv) across the
10 replicates were reported. Partial AUC ratio (pAUC)
values were calculated by splitting the data into training
(80%) and test (20%) sets using a Visual Basic program
(Barve, 2008). A pAUC value of >1.0 shows better per-
forming model. In addition, two threshold-dependent
metrics were used: omission rate (OR) at minimum
training presence threshold or lowest predicted thresh-
old (LPT; Pearson et al. 2007), and omission rate at
10% training presence threshold. The expected value
of test omission rate at LPT is 0, whereas at 10% train-
ing presence threshold it is 0.10; higher than expected
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omission rates show poor performance of the models
(Boria et al. 2014).

CLIMEX Niche Model. Our second niche model
was a semi-mechanistic model CLIMEX (version 3.0),
which has been widely used in hundreds of studies on
pest risk assessment and climate change (Sutherst et al.
2007; Kriticos et al. 2012a; Kumar et al. 2014a,b). CLI-
MEX uses an integrative inductive–deductive approach
based on species’ physiological tolerances, climatic
data, and species known distribution to estimate cli-
matic suitability for a species (Sutherst and Maywald
1985, Sutherst et al. 2007, Ireland et al. 2013). The
simulation model from CLIMEX produces an index
called Ecoclimatic Index (EI), an index of climatic suit-
ability for a species that varies from 0 to 100 (0 repre-
sents unsuitable [no population growth] and 100
optimal conditions). The EI is a combination of Growth
Index and Stress Indices; the Growth Index describes
the potential population growth and development dur-
ing favorable seasons using temperature, moisture,
radiation, substrate, light, and diapause indices, and
stress indices (cold, hot, dry, and wet stresses) describe
the limitations to population growth and species distri-
bution due to different stresses (Sutherst et al. 2007).
The “Compare Locations” function in CLIMEX was
used to develop a simulation model to estimate climatic
suitability for the establishment for codling moth. The
CliMond CM10_1975H_V1 climatic dataset (Kriticos
et al. 2012b; available at http://www.climond.org) inter-
polated at 10 arc minute (�18 km) resolution was used
in CLIMEX modeling. This dataset has long-term
monthly climate means centered on year 1975 for pre-
cipitation, maximum temperature, minimum tempera-
ture, and relative humidity at 9 a.m. and 3 p.m.

Values for CLIMEX model parameters were defined
based on published laboratory studies and phenological
observations on physiological tolerances of codling
moth. Initial parameter values were taken from CLI-
MEX User’s Guide (Sutherst et al. 2007) and Rafoss
and Saethre (2003), and were modified based on
results from recently conducted experiments and spe-
cies’ current known distribution (Table 1). The lower
temperature threshold for growth (DV0) was set at
9�C, based on Howell and Neven (2000), Saethre and
Hofsvang (2002), and Rafoss and Saethre (2003). Ear-
lier studies suggested DV0 to be close to 10�C (Shel’-
deshova 1967), a commonly used temperature
threshold in most degree-day models (e.g., Riedl and
Croft 1978, Howell and Neven 2000, Jones et al. 2013);
however, setting DV0 to 10�C did not predict codling
moth distribution in southern Norway (Rafoss and
Saethre 2003), so DV0 was reduced to 9�C. Saethre
and Hofsvang (2002) found that the lower egg develop-
ment temperature for codling moth Norwegian popula-
tions is lower (1–2�C) than the 10�C threshold. The
lower optimum and upper optimum temperature
thresholds (DV1 and DV2) were set to 15 and 27�C,
respectively, based on the studies by Shel’deshova
(1967), Rock and Shaffer (1983), Howell and Neven
(2000), and Blomefield and Giliomee (2011) (Table 1).
The upper development temperature threshold, after
which species growth stops (DV3), was set to 34.4�C,

based on the studies by Proverbs and Newton (1962),
Rock and Shaffer (1983), and Pitcairn et al. (1991).
The number of degree-days above DV0 required to
complete one generation (PDD) for codling moth was
set to 580. The PDD reported in several studies con-
ducted at different latitudes of codling moth distribu-
tional rage varied from 510-600 (Shel’deshova 1967,
Rock and Shaffer 1983, Rafoss and Saethre 2003).

Rainfall and humidity do not have significant effects
on codling moth life cycle; however, heavy rainfall may
cause larval mortality (Shel’deshova 1967, Anonymous
2014b). Soil moisture threshold values (SM0, SM1,
SM2, and SM3) were slightly adjusted from Rafoss and
Saethre (2003). We used light index as one of the limit-
ing factors in CLIMEX that was not used in earlier
models of codling moth (Sutherst et al. 2007, Rafoss
and Saethre 2003). The day length (hours) above which
growth is at a maximum (LT0) was set to 15.5 h, while
the day length (hours) below which growth is 0 (LT1)
was set to 13.5 h, based on studies by Neven (2012,
2013), Stoeckli et al. (2012), and Anonymous (2014c).
Diapause index parameters were set based on studies
by Shel’deshova (1967), Neven (2012, 2013), Stoeckli
et al. (2012), and Anonymous (2014d). Stress parame-
ters were iteratively adjusted from Rafoss and Saethre
(2003).

The categorization of EI values is an arbitrary proc-
ess because these estimated values are species-specific.
The EI values were divided into four categories:
unsuitable (EI¼ 0), marginally suitable (EI¼ 1–5),
moderately suitable (EI¼ 6–25), and highly suitable
(EI> 25; Kriticos et al. 2003). CLIMEX model was
validated qualitatively by evaluating its ability to predict
currently known occurrences of codling moth. Occur-
rences with EI values >0 were interpreted as correctly
predicted presences.

Results

Model Performance. In total, 12 MaxEnt models,
with varying complexity, using different combinations
of feature classes and RM were evaluated for predict-
ing codling moth potential distribution (Table 2). All
models performed better than random with test AUCcv

values ranging from 0.933 to 0.946, and pAUC values
from 1.807 to 1.902 (Table 2). All these models also
had low omission rates at both lowest predicted thresh-
old (0.001 to 0.004) and 10th percentile training pres-
ence threshold (0.100 to 0.144; Table 2). The best
model included eight environmental variables, linear,
quadratic, product, and threshold (LQPH) features,
RM¼ 2.0, and had the lowest BIC, and low omission
rates (Table 2). The lower omission rate represents the
better model performance. The simplest model with
only one variable (mean annual temperature; bio1) had
low omission rates but poor evaluation statistics, highest
BIC, and ranked lowest (Model 9; Table 2). The most
complex model included 10 variables, LQPTH fea-
tures, and RM¼ 1.0, had highest omission rates, and
was ranked 9th (Model 10; Table 2). CLIMEX model
also performed well and correctly predicted majority of
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the currently known occurrences of codling moth and
had an omission rate of 0.127.

Potential Distribution of Codling Moth. Projected
potential distribution from both models conformed
well to the current known distribution of codling moth
(Figs. 1 and 2). None of the models predicted suitable
environmental conditions in countries between 20th
parallels (e.g., Colombia, Ecuador, Peru, and Venezuela
in South America). Models predicted suitable condi-
tions in Japan and South Korea where codling moth

currently does not occur but include its preferred host
species (i.e., apple). MaxEnt appeared to be slightly
overpredicting the potential distribution of codling
moth (Fig. 1), whereas CLIMEX seemed to underpre-
dict (Fig. 2). MaxEnt and CLIMEX model predictions
remarkably agreed with each other in major codling
moth occurrence regions (e.g., North America, Europe,
China, India, northern Morocco, northern Algeria,
South Africa, southern Australia, Tasmania, New Zea-
land, central Chile, and Argentina; Figs. 1 and 2).

Table 1. Codling moth parameters for CLIMEX model; initial parameters were obtained from CLIMEX manual (Sutherst et al. 2007)
and Rafoss and Saethre (2003) and the values were adjusted by the authors

Parameter Description Value

Temperature index (TI)
DV0 Lower temperature threshold for growth 9�C
DV1 Lower optimum temperature for growth 15�C
DV2 Upper optimum temperature for growth 27�C
DV3 Upper temperature threshold for growth 34.4�C
PDD Number of degree-days above DV0 needed to complete one generation 580

Moisture index (MI)
SM0 Lower soil moisture threshold 0.02a

SM1 Lower optimum soil moisture 0.1a

SM2 Upper optimum soil moisture 1.8a

SM3 Upper soil moisture threshold 2.5a

Light index
LT0 Day length (hours) above which growth is at a maximum 15.5 hr
LT1 Day length (hours) below which growth is zero 13.5 hr

Cold stress (CS)
TTCS Temperature threshold for cold stress �15�C
THCS Cold stress accumulation rate �0.0011 week�1

Heat stress (HS)
TTHS Temperature threshold for heat stress 35�C
THHS Heat stress accumulation rate 0.0001 week�1

Dry stress (DS)
SMDS Soil moisture threshold for dry stress 0.02
HDS Dry stress accumulation rate �0.001 week�1

Wet stress (WS)
SMWS Soil moisture threshold for wet stress 2.5
HWS Wet stress accumulation rate 0.002 week�1

Diapause index
DPD0 Diapause induction day length 15
DPT0 Diapause induction temperature 11.0�C
DPT1 Diapause termination temperature 6.0�C
DPD Diapause development days, defaults to 0, i.e., facultative diapause 90

aThreshold expressed as a proportion of soil moisture holding capacity (0, oven dry; and 1, field capacity [saturation]). Values >1.0 indicates
the possibility of excessive amounts of rainfall and soil moisture.

Table 2. Summary of performance statistics and overfitting experiments of codling moth MaxEnt models; the best model is high-
lighted in Bold

Model no. Variables No. of
variables

MaxEnt settings BIC DBIC Test AUCcv pAUC Omission rate Model
rank

Features RM 0% 10%

1 Bio1, latitude, bio19, bio2,
bio7, bio16, elevation, bio15

8 LQPH 2.0 27901.3 0 0.940 (60.006) 1.893 (60.02) 0.001 0.110 1

2 Same as above 8 LQPH 1.0 28029.1 127.8 0.943 (60.004) 1.897 (60.02) 0.001 0.116 11
3 Same as above 8 LQPH 1.5 27954.7 53.4 0.942 (60.003) 1.895 (60.02) 0.001 0.110 8
4 Same as above 8 LQPH 2.5 27931.3 30.0 0.938 (60.008) 1.890 (60.02) 0.001 0.108 5
5 Same as above 8 LQP 2.0 27934.9 33.6 0.933 (60.006) 1.871 (60.02) 0.001 0.104 6
6 Same as above 8 LQPTH 1.0 28018.8 117.4 0.945 (60.005) 1.902 (60.02) 0.002 0.141 10
7 Model1 without elevation 7 LQPH 2.0 27921.6 20.3 0.940 (60.009) 1.891 (60.02) 0.001 0.115 4
8 bio1, latitude, bio19, bio2, 4 LQPH 2.0 27948.0 46.7 0.936 (60.006) 1.883 (60.02) 0.002 0.109 7
9 bio1 1 LQPH 2.0 28452.3 551.0 0.936 (60.006) 1.807 (60.02) 0.001 0.100 12
10 Model1þ bio17, bio18 10 LQPTH 1.0 27987.8 86.5 0.946 (60.007) 1.900 (60.02) 0.004 0.144 9
11 Same as above 10 LQPH 2.0 27918.8 17.4 0.942 (60.004) 1.890 (60.02) 0.001 0.109 3
12 Same as above 10 LQP 2.0 27915.7 14.4 0.937 (60.010) 1.881 (60.02) 0.001 0.112 2

L, Q, P, T and H are linear, quadratic, product, threshold and hinge features, respectively; BIC is Bayesian Information Criterion; RM is regu-
larization multiplier; OR is test omission rate. Test AUCcv is MaxEnt generated 10-fold cross-validation Area Under the ROC Curve; pAUC is
partial AUC ratio calculated at 0% omission rate (Peterson et al. 2008).
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However, both models also differed in some areas. For
example, MaxEnt predicted suitable conditions for
codling moth in southern Alaska, northern parts of
Libya, Egypt, and Saudi Arabia, whereas CLIMEX did
not (Figs. 1 and 2). MaxEnt predicted more suitable
areas in Xinjiang province in western China than CLI-
MEX (Figs. 1 and 2; and Supp Fig. 2 [online only]).
Enlarged maps depicting more detailed patterns of the
potential risk of establishment of codling moth in coun-
tries that are current or future potential markets for
U.S. grown apples are provided in Supp Figs. 1–5
(online only). None of the models predicted suitable
environmental conditions for codling moth in Cambo-
dia, Colombia, Ecuador, southern India, Indonesia,
Laos, Malaysia, Peru, Thailand, and Vietnam (Supp
Figs. 3–5 [online only]).

Effects of Environmental Factors. Mean annual
temperature, latitude (a surrogate for length of day
light hours), and precipitation of coldest quarter were

the top environmental variables associated with codling
moth distribution at global level with 64.9, 25.7, and
6.0% average contributions to the model, respectively
(Table 3). The jackknife tests of variable importance
also showed that these variables had higher predictive

0 3,000 km

20°N

20°S

Suitability

Unsuitable
Low

Medium

High

Fig. 1. Global risk of establishment of codling moth using MaxEnt model.

0 3,000 km
Climatic suitability (Eco-climatic Index; EI)

Unsuitable (EI = 0)
Marginal (EI = 1 - 3)
Moderate (EI = 4 - 10)
Highly favorable (EI > 10)

20°N

20°S

Fig. 2. Global risk of establishment of codling moth using CLIMEX model.

Table 3. Average percent contribution of environmental varia-
bles in the best codling moth model; values were averaged across
10 replicate runs

Variable Percent
contribution

Permutation
importance

Mean annual temperature (bio1, �C) 64.9 58.7
Latitude (degree decimal) 25.7 28.8
Precipitation of coldest quarter (bio19; mm) 6.0 3.1
Mean diurnal range in temp. (bio2; �C) 2.2 3.4
Precipitation of wettest quarter (bio16; mm) 0.4 2.0
Temperature annual range (bio7; �C) 0.4 2.1
Precipitation seasonality (CV) (bio15) 0.2 1.3
Elevation (m) 0.2 0.7
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power (i.e., high training gain and AUC) than others
(Fig. 3). The probability of codling moth presence
increased sharply between 0 and 8�C mean annual
temperature, was highest at 10�C, and declined sharply
after 13�C (Fig. 4A). The probability of presence was
higher between 30� and 60� latitudes, and 0 at <20�

latitudes and beyond 70� latitudes (Fig. 4B). The prob-
ability of codling moth presence was higher in areas of
low precipitation during the coldest quarter of the year
(Fig. 4C). Cydia pomonella had a bi-modal response to
mean diurnal range in temperature (Fig. 4D). Latitude
had a significant impact on model predictions as the
model without latitude predicted codling moth distri-
bution in areas from which codling moth has never
been reported (e.g., Ethiopia and Zimbabwe) and it
cannot survive because of higher temperature and
shorter day length (Supp Fig. 6 [online only]).

CLIMEX model predicted higher growth index for
areas where codling moth is currently known to occur
(Supp Fig. 7A [online only]). The heat stress index and
cold stress index explained why codling moth does not
occur in extremely cold northern latitudes and very hot
deserts in Africa and parts of Australia (Supp Fig. 7B
and C [online only]). The light index from CLIMEX
showed areas between 20th parallels not suitable for
codling moth (Supp Fig. 7D [online only]).

Discussion

Accurate models for economically important pests’
potential distribution are urgently needed for conduct-
ing pest risk assessments to facilitate international
trade. Our study is the first to present the global poten-
tial risk for establishment of codling moth modeled suc-
cessfully using a correlative niche model MaxEnt and a
semi-mechanistic niche model CLIMEX. Our
approach can be used for other agricultural pests of
quarantine concern. The MaxEnt model used codling
moth occurrences and a set of environmental spatial
data layers, whereas CLIMEX used published physio-
logical tolerance data for codling moth and in-built cli-
mate data layers to predict the potential for
establishment. Both models correctly predicted codling
moth known occurrences. Models did not predict suit-
able environmental conditions in countries located
between 20�N and 20�S primarily because of shorter
photoperiod, and lack of chilling requirement in these
areas needed for codling moth to break diapause. Mod-
els predicted suitable conditions in a few countries
where codling moth currently does not occur but have
its preferred host species (i.e., apple). Average annual
temperature and latitude (a surrogate for critical photo-
period) were the top environmental variables associated
with codling moth distribution.
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Fig. 3. Relative importance of the environmental variables based on the jackknife test. The figures show each variable’s
contribution to (A) regularized training gain, and (B) AUC in codling moth model.
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Evaluation of MaxEnt and CLIMEX
Models. The best MaxEnt model (Model 1; Table 2)
provided a better fit than CLIMEX, which could be
because it directly used species presence locations and
finer resolution climatic dataset. The performance of
MaxEnt was worse at the highest and lowest levels of
complexity (Models 9 and 10; Table 2). This suggests
that an appropriate level of complexity in correlative
niche models is needed to correctly model the species
response to environmental factors and to make robust
inference. Simpler models often fail to include critical
aspects of species–environment relationships (e.g., non-
linear responses and variable interactions), whereas
complex model over fit the data (Merow et al. 2014).
CLIMEX model’s poorer performance can be partly
attributed to its use of relatively simple functions to
model species responses to climatic factors, and coarse
resolution climatic dataset. For example, a simpler
model by Fowler et al. (2009; a degree-day model using
NAPPFAST) overpredicted light brown apple moth
[Epiphyas postvittana (Walker)] potential distribution,
whereas complex models estimated lower risk (Lozier
and Mills 2011; MaxEnt model). MaxEnt model, on the
other hand, is inherently complex so species-specific
tuning was required to achieve optimally complex
model (Shcheglovitova and Anderson 2013, Boria
et al. 2014). Elevation was identified as an impor-
tant factor associated with codling moth distribution
because a model with elevation as a predictor

performed better than the model without it (Models 1
and 7; Table 2). This matches with Jones et al. (2013)
study that showed a strong influence of latitude and
elevation in predicting codling moth spring emer-
gence in North America.

Global Projections of Codling Moth
Distribution. Predictions from both models matched
closely with the currently known global distribution of
codling moth and its preferred host plant, apples (Figs.
1 and 2). For example, both models predicted codling
moth distribution in southern Norway, Sweden, and
Finland which matched with the reports of its occur-
rence in these countries (Saethre and Edland 2001,
Rafoss and Saethre 2003). Our models predicted more
potentially suitable areas for codling moth in China
than models published by Yang (2008) and Liang
(2010), which may be because our models included
higher number of occurrences covering more regions
of China. It could also be because of the fact that their
models used data from only China (i.e., invaded range)
and we used global data (native and invaded range);
the regional model may have underestimated codling
moth potential suitable areas because it did not include
all the environment conditions where this species
occurs (Broennimann et al. 2007, Fitzpatrick et al.
2007, Sanchez-Fernandez et al. 2011). This may also
be the case for Rafoss and Saethre (2003) model pre-
dictions in Norway. MaxEnt model predicted codling
moth distribution in southern Alaska, which matched
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with reports from the Discover Life (2014) and Univer-
sity of Alaska, Fairbanks Cooperative Extension Service
(UAF 2014). Disagreements between CLIMEX and
MaxEnt model spatial predictions may be because of
their use of different types and spatial resolutions of cli-
matic datasets, levels of complexity in model fitting,
and their specific assumptions (Elith et al. 2011,
Sutherst et al. 2007).

Latitude, a surrogate for the number of daylight
hours, had a profound impact on codling moth poten-
tial distribution (Supp Fig. 6B [online only]). A MaxEnt
model without latitude as a variable predicted margin-
ally suitable areas for codling moth in countries such as
Bolivia, Ecuador, Peru, and western Ethiopia from
where codling moth has never been reported, and its
diapause requirement in those areas will not be met;
codling moth requires a critical photoperiod (Neven
2012, 2013), which is not met in these countries.
Therefore, this model was discarded and a model with
latitude was selected (Supp Fig. 6A [online only]). CLI-
MEX model showed that light index in these regions
was 0; indicating no growth (Supp Fig. 7D [online
only]).

Caveats and Uncertainties. Results from this
study should be interpreted cautiously given some of
the inherent uncertainties associated with niche mod-
els. For example, niche model predictions may be
affected by the quality of occurrence data, sampling
bias, resolution of spatial data layers, species character-
istics, and spatial autocorrelation (Guisan et al. 2007a,b;
Taylor and Kumar 2012; Anderson 2013; Dormann
et al. 2013; Syfert et al. 2013). The physiological tem-
perature and moisture thresholds generated in labora-
tory studies for codling moth may not have covered the
entire range of genetic and phenotypic variability in
codling moth populations globally; CLIMEX parame-
ters have uncertainties (Taylor and Kumar 2012). Max-
Ent model is also affected by different decisions made
during model calibration; for example, selection of
background points and extent, value of RM, and selec-
tion of feature types can have immense influences on
model predictions (Barve et al. 2011, Owens et al.
2013, Shcheglovitova and Anderson 2013, Boria et al.
2014). Our validation of MaxEnt predictions using a
semi-mechanistic CLIMEX model shows that decisions
made during calibration for codling moth MaxEnt
model were appropriate because the model projections
broadly matched observations in major parts of the
world (Figs. 1 and 2; Supp Figs. 1–5 [online only]).

Future climate change may alter codling moth distri-
bution; for example, with increasing global tempera-
tures, areas that currently have marginal suitability
(average annual temperature �9�C) for codling moth
would become more suitable and areas with higher
average annual temperature (>34�C) would become
unsuitable. Further studies are needed to investigate
the effects of potential climate change on codling moth
distribution and biology because changes in tempera-
ture and moisture might alter insect pests’ population
growth rates, increase the number of generations,
extend the development season, and modify the crop–
pest synchrony and interspecific interactions (Porter

et al. 1991). A better temporal resolution climate data
may be needed for insect pest establishment predictive
models because monthly averaged climatic data such as
available from WorldClim (Hijmans et al. 2005) may
not be appropriate for some insect pests that have crit-
ical physiological requirements of weekly or daily mini-
mum temperature (Kumar et al. 2014a). In addition to
suitable climate, the likelihood of establishment of an
insect pest in new geographic areas is also affected by
the propagule pressure (i.e., the number of individuals
of a species introduced to a novel region), presence of
host plant species, and other abiotic factors and biotic
interactions (e.g., presence of competitors and natural
enemies) (Thuiller et al. 2005, Saikkonen et al. 2012,
Bacon et al. 2014). Our models predicted climatic suit-
ability in several areas, where codling moth currently
does not occur (e.g., South Korea and Japan) which
may be because of very low propagule pressure, disper-
sal barriers, and presence of natural enemies in these
regions. The propagule pressure in different parts of
the world depends on the frequency and amount of
fruit imports and the likelihood of these fruits being
infested with codling moth.

International Trade Implications for
Biosecurity. Our results can be used to help guide
pest risk assessments by the national plant protection
organizations, monitoring for unintentional introduc-
tions of codling moth in different countries, and policy
makers and trade negotiators in making science-based
decisions. In addition, in countries like China, which is
dealing with a relatively recent introduction and spread
of codling moth (Yang 2008, Liang 2010, Zhang et al.
2012), these maps can be used to identify areas most at
risk of the expansion of this pest. Efforts can be coordi-
nated and concentrated strategically across susceptible
areas to stem the incursion. Countries like Japan and
South Korea where codling moth currently does not
occur can use these results for effective monitoring and
surveillance of potential introduction of this pest via
trade from currently infested countries and/or all coun-
tries with high climatic suitability. An additional poten-
tial application of these maps is the identification of
areas most suitable for area-wide pest suppression, ster-
ile insect technique, or eradication. Areas with estab-
lished populations of codling moth which are on the
extreme margins of climate suitability can be targeted
as the most likely locations for these suppression and
eradication efforts.

Supplementary Data

Supplementary data are available at Journal of Eco-
nomic Entomology online.
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