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Hypoxia Activation of Mitophagy and Its Role
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Abstract

Significance: Mitochondria utilize most of the oxygen to produce adenosine triphosphate via electron transfer
coupled with oxidative phosphorylation. Hypoxia undoubtedly induces reduced energy production via de-
creased mitochondrial metabolic activity or altered hypoxia-inducible factor-1- and peroxisome proliferator-
activated receptor gamma coactivator 1-dependent mitochondrial biogenesis. Hypoxia may also activate
mitophagy to selectively remove damaged or unwanted mitochondria for both mitochondrial quantity and qual-
ity control. Increasing evidence has shown that the accumulation of damaged mitochondria is a characteristic of
aging and aging-related diseases, such as metabolic disorder, cancer, and neurodegenerative disease. Recent
Advances: Both receptor-dependent and PTEN-induced putative kinase 1-PARKIN-dependent mitophagy have
been described. Mitophagy receptors include Atg32 in yeast, as well as NIX/BNIP3L, B-cell lymphoma 2/
adenovirus E1B 19-kDa-interacting protein 3 and FUN14 domain containing 1 in mammals. In response to
hypoxia or mitochondrial oxidative stress, receptor-mediated mitophagy was found to be activated via both
transcriptional and post-translational modification. Critical Issues: To date, the molecular mechanisms by
which hypoxia triggers mitophagy and by which mitophagy contributes to the pathogenesis of aging-related
diseases remain to be explored. Future Directions: An improved understanding of the regulation of mito-
chondrial quality may provide a strategy for treating aging-related diseases by targeting mitochondria and
mitophagy pathways. Antioxid. Redox Signal. 22, 1032–1046.

Introduction

Autophagy refers to the catabolic processing of cel-
lular components, including misfolded proteins, protein

aggregates, damaged organelles, lipid droplets, and even
nuclear components. The to-be-disposed cellular contents are
enclosed by a double-membrane structure termed the au-
tophagosome, which fuses with the lysosome for degrada-
tion. Subsequently, the breakdown products (such as amino
acids, fatty acids, carbohydrates, and even nucleotides) are
released and recycled for both biosynthesis and energy gen-
eration (97). Autophagy has long been considered a non-
selective bulk digestion pathway to eliminate aggregated
proteins and organelles in response to energy deprivation and
metabolic stress. Increasing evidence has shown that autop-

hagy may be highly selective. Under certain stresses, protein
aggregates, organelles, including mitochondria, endoplasmic
reticulum (ER), peroxisomes, components of nuclei, lipid
droplets, and invading pathogens, are selectively recognized
and removed by the autophagy machinery via processes re-
ferred to as aggrephagy, mitophagy, reticulophagy, pexophagy,
nucleophagy, lipophagy, and xenophagy, respectively. Selec-
tive autophagy is typically mediated by specific adaptors or
receptors (118). Both general and selective autophagy have
been extensively reviewed by many outstanding scientists in
the field. Here, we summarize the recent advances in mito-
phagy, with a particular focus on the hypoxic induction of
mitophagy. We also discuss the association between mitophagy
and diseases, which suggests the therapeutic potential of novel
strategies targeting mitochondria and mitophagy.
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General Autophagy

Based on the manner of cellular cargo delivered to the
lysosome, there are three distinct modes of autophagy: mi-
croautophagy, chaperone-mediated autophagy (CMA), and
macroautophagy. Microautophagy, which has been described
in yeast but rarely in mammalian cells, is defined as the
translocation of cytoplasmic components into the lysosome
via invagination of the lysosomal membrane, resembling the
formation of late endosomes/multivesicular bodies (96). In
contrast, CMA has been characterized in higher eukaryotes
but not in yeast. In CMA, misfolded cytosolic proteins con-
taining the pentapeptide KFERQ are selectively recognized
by heat shock cognate protein heat-shock cognate protein 70,
and this substrate-chaperone complex is recruited by the ly-
sosomal receptor protein lysosome-associated membrane
protein type 2a (63). Macroautophagy refers to the classic
autophagy process, in which a double-membrane autopha-
gosome surrounds cellular cargo, fuses with lysosome, and,
ultimately, facilitates degradation of the cargo by lysosomal
enzymes. As the primary mode of autophagy, macro-
autophagy is regarded as autophagy.

More than 30 autophagy-related genes (Atg) and corre-
sponding proteins have been identified as participating in
autophagy-related processes, including the activation of auto-
phagy signaling cascade, the assembly and expansion of the
double-membrane structure, and then fusion between auto-
phagosome and lysosome leading to the lysosomal degra-
dation and the release of autophagic products (98). Starvation
has been reported to be the most common trigger of autophagy.
Amino-acid or growth factor deprivation induces autophagy
primarily via the phosphatidylinositol-4,5-bisphosphate 3-
kinase-mammalian target of rapamycin (mTOR) pathway, the
master sensor that monitors the intracellular nutrient status
(58). Specifically, the presence of amino acids, especially
branch chain amino acids such as leucine and arginine, facil-
itate lysosomal localization- and activity-induced activation of
mTOR by promoting the formation of the active configuration
of the RAG GTPase complex (122, 123, 163). UNC-51-like
kinase-1 (ULK1), the mammalian homolog of yeast Atg1,
bridges the nutrient sensor mTOR to autophagy initiation via
phosphorylation/dephosphorylation alteration (37, 52, 67).
Furthermore, a low glucose level initiates autophagy via AMP-
activated protein kinase (AMPK) kinase to regulate ULK1
activity (32, 67, 130). In addition to these highly effective
signaling cascade-mediated post-translational modifications,
there is also a variety of transcription factors that participate in
long-term autophagy regulation. The transcription factor EB, a
master transcription factor of lysosomal biogenesis, coordi-
nates this process by inducing the expression of autophagy and
lysosomal genes, including Atg4, Atg9, Wipi, and so on (129).
Zinc finger protein with KRAB and SCAN domains 3, which
belongs to the family of zinc finger transcription factors that
contains Kruppel-associated box and SCAN domains, was
found to act as an autophagy repressor to prevent the expres-
sion of several genes involved in various steps of autophagy
and lysosome biogenesis/function (17). Furthermore, the
Forkhead box O (FOXO) transcription factors, including
FOXO1 (159) and FOXO3 (91), are also master regulators of
autophagy.

Despite significant progress in the field, the origin of the
autophagosomal membrane remains enigmatic to many au-

tophagy researchers. Several independent groups have shown
that these double-membrane structures originate from the ER
(121, 153), the Golgi apparatus (152), mitochondria (44), or
the plasma membrane (115). Recently, Yoshimori and col-
leagues demonstrated that the isolation membrane forms at
the ER–mitochondria contact site in mammalian cells (47).
High-resolution imaging analysis showed that ATG14L, the
marker protein of autophagosome/pre-autophagosome, re-
localizes to the ER–mitochondria contact site in response to
autophagy initiation signaling by binding to the ER-resident
SNARE protein syntaxin 17. Once activated, the ULK1
complex translocates to this isolation membrane-forming site
to recruit other ATG proteins and autophagy-specific phos-
phatidylinositol-3-phosphate effectors to induce nucleation.
After nucleation, the E3-like ligase complex Atg16L1, com-
posed of the Atg12, Atg5, and Atg16L1 proteins, is recruited
to the membrane to mediate the lipidation of microtubule-
associated protein 1A/1B-light chain 3 (LC3) and LC3
homolog proteins. Due to the lipidation of LC3 and LC3
homologue proteins, the isolation membrane expands to form
a complete autophagosome.

Mitochondrial Autophagy

Mitochondria are cellular powerhouses that produce
adenosine triphosphate (ATP) via the coupling of electron
transport chain activity with oxidative phosphorylation in the
inner mitochondrial membrane. In addition to ATP produc-
tion, mitochondria provide space for key metabolic pro-
cesses, such as fatty acid oxidation, iron metabolism, the urea
cycle, and calcium storage. Research in the past three decades
has firmly established that in response to apoptotic stimuli,
including DNA damage, chemotherapeutic agents, serum
starvation, and UV radiation, the mitochondrial outer mem-
brane becomes permeabilized, releasing apoptogenic factors,
especially cytochrome c, which binds to apoptotic protease
activating factor 1 to form the apoptosome and to activate
caspases for apoptosis (85). In addition, reactive oxygen
species (ROS) are an inevitable byproduct of oxidative
phosphorylation. Excessive ROS accumulation causes mi-
tochondrial oxidative damage and mitochondrial dysfunction
and contributes to several pathological processes, including
aging (82), apoptosis (140), and cellular injury, during is-
chemia and reperfusion (56). Therefore, it is critical for the
cell to remove unwanted or damaged mitochondria for the
maintenance of appropriate mitochondrial quality for cellular
health. Mitochondrial autophagy, or mitophagy, which refers
to the selective removal of unwanted or damaged mito-
chondria via the autophagic machinery, is considered re-
sponsible for the maintenance of mitochondrial quality (76).

Mitophagy was initially detected in hepatocytes treated
with glucagon, resulting in the sequestration of mitochondria
in lysosomes. In 2007, Lemasters and colleagues found that
mitochondria are engulfed by the autophagosome in hepa-
tocytes isolated from green fluorescent protein-LC3 trans-
genic mice when the cells are maintained in nutrient-deprived
medium (66, 117). Therefore, mitophagy was termed to de-
scribe selective mitochondrial sequestration by the autopha-
gosome and degradation in the lysosome. Since then, an
increasing number of reports have detected mitophagy under
a variety of experimental conditions. Similarly, mitophagy
has been detected in both physiological processes, such as red
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blood cell maturation and sperm-derived mitochondria
elimination after fertilization, and pathological events, such
as cancer and neurodegenerative disease. Currently, both
receptor-dependent and -independent mechanisms of mito-
phagy have been described.

Receptor-Mediated Mitophagy

Atg32-mediated mitophagy in yeast

Atg32 was found to function as a mitophagy receptor in
yeast based on mutant screening (61, 62, 106). Atg32 is a 59-
kDa, single-pass mitochondrial outer membrane protein, with
its N- and C-terminal domains exposed to cytosol and mi-
tochondrial intermembrane space, respectively. The cyto-
solic N-terminal domain contains a W/Y X X I/L/V region,
the Atg8-family interacting motif (AIM), which interacts
with Atg8 (106). In cells cultured in non-fermentable me-
dium, a condition in which mitophagy is induced, yeast
lacking Atg32 exhibit deficient mitophagy but predominantly
intact starvation-inducing bulk autophagy, confirming Atg32
serving as a specific mitophagy receptor (62, 106). Atg32 is
reported to be strongly activated in yeast under respiratory
conditions, to which oxidative stress appears to contribute, as
the ROS scavenger N-acetylcysteine prevents Atg32 induc-
tion and subsequent mitophagy (106), possibly due to the
restoration of the glutathione pool (28).

Atg32 has been reported to physically associate with Atg8
in a conserved manner via its typical AIM, facilitating its
function as a mitophagy receptor by directly recruiting the
Atg8-containing phagophore to sequester mitochondria. The
W86A I89A mutant of Atg32, which lacks the ability to in-
teract with Atg8, exhibits partial but not complete deficiency
of mitophagy, suggesting that the AIM-dependent Atg32–
Atg8 interaction is important but not essential for mitophagy
(74, 106). Furthermore, Atg32 is defined as an Atg11-
interacting protein, and the Atg32–Atg11 interaction is thought
to be an early step of mitophagy initiation that is distinct from
autophagosome formation (74). In addition, Ser114 phos-
phorylation of Atg32 has been demonstrated to be critically
important for Atg32–Atg11 interaction and subsequent mi-
tophagy (2). Casein kinase-2 (CK2) phosphorylates Atg32 at
Ser114 and Ser119, increasing the stability of the Atg32–
Atg11 interaction and specifically promoting mitophagy but

not bulk autophagy or pexophagy. In addition, two mitogen-
activated protein kinases, Slt2 and Hog1, are reported to be
responsible for Atg32 phosphorylation and mitophagy (2, 93)
(Fig. 1).

In addition to Atg32, the mitochondrial outer membrane
protein Uth1p (71) and the mitochondrial protein phospha-
tase homolog Aup1p (136) have also been identified to be
involved in mitochondrial clearance in yeast cultures sub-
jected to nutrient starvation or a prolonged stationary phase,
respectively. Furthermore, it has been suggested that mito-
chondrial dynamic is significantly related to mitophagy, as
the fragmented mitochondria are more easily sequestered by
autophagosomes, and specifically fragmented mitochondria
removal is more effective to maintain mitochondrial quality
(41, 114, 139). It has been reported that the dynamin-related
GTPase Dnm1, which mediates the fission of the outer mi-
tochondrial membrane, is required for mitophagy induced by
Mdm38 knockout (103), YPL medium, or lga2 over-ex-
pression (101). Recently, Klionsky and colleagues showed
that the Dnm1 fission complex can trigger mitophagy via an
interaction with Atg11-Atg32 (92).

NIX/B-cell lymphoma 2/adenovirus E1B
19-kDa-interacting protein 3-mediated mitophagy

B-cell lymphoma 2 (BCL2)/adenovirus E1B 19-kDa-
interacting protein 3 (BNIP3) (9, 116, 151) and NIX (also
known as BNIP3 L) (18, 54, 105) were initially identified as
BCL2 homology 3 domain (BH3)-only pro-apoptotic pro-
teins with their C-terminal transmembrane domain localizing
to the mitochondrial outer membrane. As alternative BH3-
only proteins, BNIP3 and NIX confer similar pro-apoptotic
activity by heterodimerizing with BCL2 or B-cell lymphoma-
extra large (BCL-XL). Over-expression of BNIP3 (27, 45) or
NIX (5) triggers protective autophagy under a series of stresses,
possibly by disrupting the interaction between BCL2/BCL-
XL and Beclin1 (89, 90).

Using NIX knockout mice, several independent groups
have shown that NIX deficiency leads to anemia, re-
ticulocytosis, and erythroid-myeloid hyperplasia, and de-
velopment disorder during erythroid maturation. The
clearance of mitochondria during this period is defective in
the absence of NIX (124, 127). NIX contains a typical LC3-
interacting region (LIR, similar to the AIM in yeast) motif

FIG. 1. Atg32-mediated mitophagy in yeast. The single-pass mitochondrial outer membrane protein Atg32 contains an
AIM domain and directly interacts with Atg8. When yeast is cultured in non-fermentable medium, Atg32 is phosphorylated
via the Hog1 MAPK-CK2 pathway at S114 and S119. This phosphorylation enhances the Atg32–Atg11 interaction, the
Atg32–Atg11–Atg8 interaction, and the subsequent recognition of mitochondria by the phagophore. AIM, Atg8-family
interacting motif; Atg, autophagy-related genes; CK2, casein kinase-2; MAPK, mitogen-activated protein kinases. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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that interacts with the LC3 protein and its homolog GABAA
receptor-associated protein (GABARAP) both in vitro and
in vivo (102, 126). It is thought that NIX recruits the auto-
phagosome to mitochondria by directly binding to LC3 and
GABARAP. Mutating the LIR motif decreases the interac-
tion between NIX and LC3/GABARAP and abolishes mito-
phagy to a certain extent. Furthermore, re-introduction of
wild-type NIX to NIX - / - reticulocytes rescues mitochon-
drial clearance to the level in wild-type mice. During ery-
throid differentiation, NIX is strongly up-regulated (1, 127)
and mediates mitochondria removal. In addition to NIX,
BNIP3 interacts with LC3 [but not GABARAP (48)] via its
LIR motif to act as a mitophagy receptor (45, 48, 79, 113)
(Fig. 2).

FUN14 domain containing 1–mediated mitophagy

We have recently identified that the mitochondrial outer
membrane protein FUN14 domain containing 1 (FUNDC1)
functions as a mitophagy receptor in mammalian cells
(83). The FUNDC1 protein contains three transmembrane
domains, as well as the N-terminus domain exposed to the
cytosol, and the C-terminus domain inserted into the mito-
chondrial outer membrane. Ectopically expressed FUNDC1
induces a significant increase in the colocalization of LC3
puncta with fragmented mitochondria, accompanied by a
decrease in mitochondrial mass, the typical phenotype of
mitophagy. FUNDC1 was found to contain a characteristic
LIR motif at the cytosol-exposed N-terminus. FUNDC1 di-
rectly interacts with LC3 and LC3 homologs via its LIR
domain, and mutation of its LIR domain disrupts this inter-
action and, subsequently, abolishes mitophagy (Fig. 3).

PTEN-Induced Putative Kinase 1-PARKIN
Pathway of Mitophagy

The cytosolic E3 ubiquitin ligase PARKIN, encoded by the
Park2 gene, and the mitochondrial serine/threonine kinase

PTEN-induced putative kinase 1 (PINK1), encoded by the
Pink gene, which are associated with the familial form of
Parkinson’s disease (26, 72, 104, 141), are reported to regu-
late mitophagy. Loss-of-function mutation analyses using
Drosophila melanogaster showed that deficiency of PAR-
KIN or PINK1 results in similar phenotypes, including
muscle degeneration and cell death, reduced lifespan, loco-
motor defects, and male sterility (23, 42, 109). Furthermore,
the phenotypes caused by PINK1 loss can be rescued by
PARKIN but not vice versa, suggesting that PARKIN and
PINK1 function via identical pathways, with PARKIN acting
downstream of PINK1 (150). Research from Youle’s group
and many other laboratories has demonstrated the function of
the identical PINK1-PARKIN pathway in selective mito-
phagy in mammalian systems (78, 99, 100). Under normal
conditions, PINK1 is transported to mitochondria via the
translocase of the outer mitochondrial membrane (TOM) and
the translocase of the inner mitochondrial membrane com-
plexes, processed by presenilin-associated rhomboid-like
protease, and, ultimately, degraded. When mitochondria are
depolarized by the uncoupler toxin carbonyl cyanide-4-(tri-
fluoromethoxy) phenylhydrazone, PINK1 escapes from this
processing and accumulates on the mitochondrial outer
membrane. Moreover, TOMM7, a component of the TOM
complex, serves as a positive regulator to stabilize PINK1
(49). PINK1 accumulation on the mitochondrial outer
membrane facilitates the targeting of PARKIN to these de-
polarized mitochondria. Furthermore, the kinase activity of
PINK1 is essential for PARKIN translocation. PINK1 may
phosphorylate PARKIN at Ser65, which is the prerequisite
for PARKIN translocation and subsequent mitophagy (53,
70, 73, 131). Most recently, it has been reported that phos-
phorylation of ubiquitin on Ser65 (60, 64, 75) and mitofusin 2
(MFN2) (21) by PINK1 are crucial for the recruitment of
PARKIN to mitochondria and its ubiquitin ligase activity. On
translocation to the mitochondrial outer membrane, PARKIN
ubiquitinates a variety of mitochondrial proteins, including

FIG. 2. NIX/BNIP3-mediated mi-
tophagy. The mitochondrial outer
membrane proteins NIX and BNIP3
have been identified as pro-apoptotic
BH3-only proteins. Both contain an
LIR domain and directly interact with
LC3 or LC3 homologs. During red
blood cell terminal differentiation or
hypoxia, NIX and BNIP3 are activated
to induce the removal of mitochondria.
BNIP3 has recently been demonstrated
to be phosphorylated at S17 and S24,
which strengthens the BNIP3-LC3 in-
teraction and promotes mitophagy.
BH3, BCL2 homology 3 domain;
BNIP3, BCL2/adenovirus E1B 19-kDa-
interacting protein 3; LC3, microtubule-
associated protein 1A/1B-light chain 3;
LIR, LC3-interacting region. To see this
illustration in color, the reader is re-
ferred to the web version of this article at
www.liebertpub.com/ars
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dynamin-related protein 1 (143), MFN1/2 (38, 137, 162),
voltage-dependent anion channel (39, 132), and components
of the TOM complex (15, 125, 154). Ultimately, the hyper-
ubiquitination of the mitochondrial outer membrane initiates
mitophagy. Recent studies have shown that the targeting of
PINK1-PARKIN to depolarized mitochondria arrests the
movement of these dysfunctional mitochondria and prevents
them from traveling peripherally. PINK1 phosphorylates the
GTPase mitochondrial RHO GTPase (Miro), a key compo-
nent in the recruitment of the kinesin-1 heavy chain (KHC) to
the mitochondrial surface. This phosphorylation accelerates
PARKIN-dependent Miro degradation, detaches KHC from
these depolarized mitochondria, and promotes the accumu-
lation of these mitochondria in somatodendritic regions,
where lysosomes are predominantly located (12, 144, 146).
As mentioned earlier, PARKIN translocation facilitates
MFN1/2 degradation (38, 137). Collectively, the PINK1-
PARKIN pathway plays a general role in mitochondrial
trafficking and dynamics, including fission and fusion, as
well as the highly specific and effective clearance of un-
wanted mitochondria (Fig. 4).

In addition to the PINK1-PARKIN pathway and these
mitophagy receptors, some core autophagy components have
been reported to play specific roles in mitophagy regulation.
In the absence of Atg7, mitochondrial clearance from retic-
ulocytes is reduced (157). Similarly, in the absence of ULK1,
the unique kinase of core autophagy components, mitochon-
drial clearance from reticulocytes is impaired (77). In stable
PARKIN-expressing mouse embryo fibroblast (MEF) cells,
CCCP induces the association between the ULK1 complex and
clustered mitochondria (55). Although PINK1-PARKIN-
pathway-mediated mitophagy and receptor-mediated mito-
phagy have been reported to occur under distinct experimental
conditions, the crosstalk between these pathways should not be

ignored. Dorn (30) reported that both aged BNIP3 and NIX
knockout mice display accumulation of dysfunctional mito-
chondria in the heart. Moreover, the BNIP3 and NIX double
knockout mice display even further accumulation, suggest-
ing that these two mitophagy receptors perform overlap func-
tions in regulating damaged mitochondrial removal in the aged
heart (30). Ectopically expressed BNIP3 in adult myocytes
induces the translocation of PARKIN to mitochondria (79).
In addition, deficiency of NIX in MEF cells reduces CCCP-
induced PARKIN translocation (29). Similarly, knocking
down FUNDC1 reduces CCCP-induced PARKIN transloca-
tion, demonstrating that these mitophagy receptors cooperate
with PINK1-PARKIN pathway to fine-tune the mitophagy
process (19).

Hypoxia Activation of Mitophagy

Oxygen is one of the most important metabolic substrates
for oxidative phosphorylation inside mitochondria. A low level
of oxygen (hypoxia) in cells and tissues, which is characteristic
of most tumors, leads to the transcriptional upregulation of a
series of genes that participate in angiogenesis, iron metabo-
lism, glucose metabolism, and cell proliferation/survival (65).
Hypoxia is currently considered a negative prognostic and
predictive factor due to its multiple contributions to chemore-
sistance, radioresistance, angiogenesis, vasculogenesis, inva-
siveness, metastasis, resistance to cell death, alteration of
metabolism, and genomic instability (147).

Hypoxia signaling and mitochondria

At present, the transcription factor hypoxia-inducible
factor-1 (HIF-1) is considered the most important regulator
responsible for adaptation of hypoxia. HIF-1, a heterodimeric
complex consisting of the hypoxia-induced subunit HIF-1a

FIG. 3. FUNDC1-mediated mitophagy. The recently identified mitophagy receptor FUNDC1 contains a characteristic
LIR domain at its cytosol-exposed N-terminus. FUNDC1 is phosphorylated by SRC and CK2 at Y18 and S13, respectively.
The mitochondrially localized phosphatase PGAM5 dephosphorylates FUNDC1 at S13. When cells are maintained under
normoxic conditions, SRC and CK2 are constitutively active and phosphorylate Y18 and S13 of FUNDC1, respectively.
PGAM5 interacts with BCL-XL, inhibiting its phosphatase activity. This phosphorylation of FUNDC1 status prevents the
activity of this mitophagy receptor. During hypoxia, SRC and CK2 become inactivated, and PGAM5 is released, enabling
dephosphorylation at S13, due to the rapid degradation of BCL-XL. The dephosphorylation of FUNDC1 at both sites
enhances the FUNDC1-LC3 interaction and promotes mitophagy. BCL-XL, B-cell lymphoma-extra large; FUNDC1,
FUN14 domain containing 1; PGAM5, phosphoglycerate mutase family member 5. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars
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and the constitutively expressed subunit HIF-1b, transcrip-
tionally regulate the expression of several genes by binding to
the hypoxia response element (HRE) in these hypoxia-
responsive genes (142). Since HIF-1b is constitutively
expressed, the subunit HIF-1a, which contains an oxygen-
dependent degradation domain and is tightly regulated by
oxygen, is considered the major regulator of the activity of
the HIF-1 complex (112). Under normoxia, the HIF-1a pro-
tein is rapidly degraded, resulting in minimal transcriptional
activity of the HIF-1 complex. When cells are subjected to
hypoxic conditions, HIF-1a becomes stabilized and translo-
cates from the cytosol to the nucleus, where it interacts with
HIF-1b to facilitate transcriptional activity. The degradation
of HIF-1a under normoxia is dependent on its hydroxylation
at two proline residues (P402 and P564) by prolyl hydroxy-
lase domains (PHDs). The hydroxylated HIF-1a is recog-
nized by the E3 ubiquitin ligase complex von Hippel-Lindau
tumour suppressor protein, leading to its proteasome-
dependent degradation. During hypoxia, PHDs lose their
hydroxylase activity due to a lack of O2, and HIF-1a becomes
stabilized (128) (Fig. 5).

In the electron transport chain, oxygen is the terminal ac-
ceptor of electrons from cytochrome c oxidase. Since mito-
chondria consume most (*85–90%) of the O2 to perform
oxidative phosphorylation, hypoxia causes damage to mito-
chondria and to cells in general. During hypoxia, cytochrome
c oxidase is unable to transport electrons because of the lack
O2. Hypoxia-activated HIF-1-mediated transcriptional ac-
tivity converts metabolic activity from aerobic respiration to
anaerobic glycolysis by suppressing mitochondrial aerobic
metabolic processes, including the tricarboxylic acid cycle
and oxidative phosphorylation. In addition, HIF-1 has been
reported to initiate the expression of certain genes, including

pyruvate dehydrogenase kinase, thereby affecting oxidative
phosphorylation (69, 108).

It was thought that hypoxia decreases the ROS level due to
the low level of O2 and the diminished mitochondrial respi-
ration. However, the ROS level has been reported by several
groups to increase during hypoxia. Chandel et al. reported
progressive increases in ROS at 5%, 3%, and 1% oxygen
and demonstrated that this increased ROS level is vital for
hypoxia-induced HIF-1a stability and subsequent HIF-1
transcriptional activity (16). In addition, independent groups
have demonstrated that hypoxia increases the level of nitric
oxide (NO) (25), which competitively inhibits the interaction
between mitochondrial enzyme cytochrome c oxidase and O2

(10, 24). Similar to ROS, NO has been demonstrated to sta-
bilize HIF-1a during hypoxia (95). Furthermore, several
studies have shown that hypoxia also affects mitochondrial
Ca2 + flux (11, 86, 111), mitochondrial morphology (22, 84),
and the mitochondrial membrane potential (36).

Hypoxia-induced autophagy

Hypoxia has long been known to trigger autophagy both
in vivo and in vitro. In 2007, Tracy et al. showed that hypoxia
triggers autophagy-dependent cell death in MEF cells via the
induction of BNIP3. Repressing BNIP3 suppresses autop-
hagy and cell death, suggesting that the pro-apoptotic protein
BNIP3 plays a central role in hypoxia-induced autophagy and
autophagic cell death (138). A similar phenomenon and
mechanism were confirmed by independent groups in gli-
oma, breast cancer cells, and other systems (3, 33, 155).
However, Mazure and colleagues reported that hypoxia in-
duces protective autophagy in an HIF-1-dependent manner
via the induction of BNIP3 and NIX. Inhibition of this

FIG. 4. PARKIN-mediated mito-
phagy. PINK1 translocates to mito-
chondria via the TOM and TIM
complexes. When mitochondria obtain
normal membrane potential (Dw),
PINK1 is processed by the inner mi-
tochondrial protease PARL and is,
ultimately, degraded. When mito-
chondria lose the membrane potential,
PINK1 escapes from PARL and ac-
cumulates on the mitochondrial outer
membrane via its transmembrane do-
main. The accumulation of PINK1
phosphorylates the E3 ligase Parkin,
facilitating its translocation to these
mitochondria. Ultimately, PARKIN
mediates the hyper-ubiquitination of
the mitochondrial outer membrane,
inducing the recognition of these dam-
aged mitochondria by an isolation
membrane. PARL, presenilin-associated
rhomboid-like protease; PINK1, PTEN-
induced putative kinase 1; TIM,
translocase of the inner mitochondrial
membrane; TOM, translocase of the
outer mitochondrial membrane. To see
this illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars
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autophagy by knocking down Atg5 or Beclin1 increases cell
death (5) (Fig. 5).

In addition to BNIP3 and NIX, ER stress and the unfolded
protein response (UPR) pathway have been found to participate
in hypoxia-induced autophagy. Harris and colleagues showed
that severe hypoxia up-regulates LC3 expression and promotes
cell survival-related autophagic activity, which is dependent on
activating transcription factor 4 (ATF4), the transcriptional
factor involved in double-stranded RNA-activated protein ki-
nase-like endoplasmic reticulum kinase (PERK)-mediated
UPR signaling (120). Almost simultaneously, Wouters and
colleagues confirmed this concept. The UPR-related tran-
scription factors ATF4 and CCAAT-enhancer-binding protein
homologous protein bind to LC3 and Atg5 promoters, respec-
tively. The levels of the core autophagic components LC3 and
Atg5, along with cell-protective autophagy, are increased in
hypoxic tumor cells both in vivo and in vitro, which is depen-
dent on PERK signaling (119). Furthermore, mTOR may par-
ticipate in hypoxia-induced autophagy (7, 80) (Fig. 5).

Hypoxia-induced mitophagy

As mentioned earlier, hypoxia leads to alterations in mito-
chondria, including decreased oxidative phosphorylation, cy-

tochrome c oxidase activity, and increased ROS production.
Due to these damages, mitophagy is undoubtedly induced
during hypoxia. However, several independent studies have
demonstrated that hypoxia stimulates mitochondrial biogene-
sis via various mechanisms, including nitric oxide synthase
(NOS) (43) and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a) (160). PGC-1a is ele-
vated in heart tissue and cell lines subjected to hypoxia, and
this up-regulation is dependent on AMPK signaling. More-
over, it has been reported that NO and neuronal NOS (nNOS),
but not endothelial NOS (eNOS), are vital for hypoxia-induced
PGC-1a expression and mitochondrial biogenesis. In contrast,
hypoxia has been reported to suppress mitochondrial biogen-
esis, which is dependent on the inhibitory effect of FOXO3A
on c-Myc transcription factor activity, suppressing the ex-
pression of mitochondria-associated genes (34, 57). Collec-
tively, this dual effect of hypoxia on mitochondria (hypoxia
inducing both mitochondrial biogenesis and mitophagy) sug-
gests that the O2 level and the O2 sensor HIF-1 act as the
principal effectors that maintain the homeostasis between the
cellular energy demand and redox homeostasis (Fig. 6).

It remains unclear whether the PINK1-PARKIN pathway
or the mitophagy receptor Atg32 participates in the regula-
tion of hypoxia-induced mitophagy. Increasing evidence

FIG. 5. Hypoxia signaling and hypoxia-induced autophagy. Hypoxia signaling and hypoxia-induced autophagy are pri-
marily mediated by the oxygen-sensitive transcription factor HIF-1a. During normoxia, HIF-1a is hydroxylated by PHDs, and
the hydroxylated HIF-1a is ubiquitinated by the E3 ligase complex VHL, leading to its degradation. During hypoxia, PHDs are
inactivated, stabilizing HIF-1a expression. Then, HIF-1a translocates to the nucleus and interacts with HIF-1b to form the HIF-1
complex, which binds to HRE regions to promote the expression of specific genes, such as Nix and Bnip3, promoting
autophagy. HIF-1a has been demonstrated to induce endoplasmic reticulum stress and, subsequently, autophagy either directly
or indirectly via the transcriptional control of LC3 and Atg5. Hypoxia has also been reported to regulate autophagy via the ROS
level and the AMP/ATP ratio. ATP, adenosine triphosphate; HIF-1, hypoxia-inducible factor-1; HRE, hypoxia response
element; PHD, prolyl hydroxylase domain; ROS, reactive oxygen species; VHL, von Hippel-Lindau tumor suppressor protein.
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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shows that hypoxia-induced mitophagy occurs via the HIF-
1a-induced expression of BNIP3 and NIX, the two mito-
phagy receptors (4, 155, 156). Both BNIP3 and NIX contain
an HRE motif in their promoter region. In addition to the
transcriptional regulation, the post-translational regulation of
BNIP3 has been reported. Brady and colleagues showed that
phosphorylation of serine residues 17 and 24, which flank the
BNIP3 LIR domain, promotes the interaction between BNIP3
and LC3, increasing the maturation and autophagic degra-
dation of mitochondria (161) (Fig. 2).

The molecular mechanism by which hypoxia initiates
FUNDC1-mediated mitophagy has begun to be understood.
Hypoxia affects the reversible phosphorylation of this mito-
phagy receptor. Tyr18, which is located in the LIR motif, is
phosphorylated by SRC kinase under normoxia, and de-
phosphorylation occurs before hypoxia-induced mitophagy
due to the inactivation of SRC kinase. Ser13 is phosphory-
lated by CK2 under normoxia and becomes depho-
sphorylated by the mitochondrially localized phosphatase
phosphoglycerate mutase family member 5 (PGAM5) in re-
sponse to hypoxia. Under normoxic conditions, PGAM5 in-
teracts with BCL-XL, which blocks its phosphatase activity.
When cells encounter hypoxic conditions, rapid BCL-XL

degradation induces PGAM5 release and activation to de-
phosphorylate FUNDC1 at Ser13. When dephosphorylated at
both sites, FUNDC1 displays a significantly higher affinity to
LC3, which induces a strong interaction between FUNDC1
and LC3, resulting in specific mitophagy to remove these
damaged mitochondria (149). Inactivating either SRC or
CK2 alone using pharmacological inhibitors or a knockdown
approach is not sufficient to initiate mitophagy, but inhibition
of both kinases strongly induces mitophagy (19). This two-
part mechanism results in the fine-tuning of mitophagy dur-
ing hypoxia (19, 83, 149) (Fig. 3).

Mitophagy and Diseases

Hypoxia has been associated with several types of human
diseases, such as tumors (50), neurodegenerative diseases
(110), and metabolic disorders (35). Many of these diseases
display characteristic energy metabolism defects due to the
accumulation of dysfunctional mitochondria. As the most
important mechanism to maintain appropriate mitochondrial
quality and quantity, mitophagy is suggested to play pivotal
roles in the pathogenesis of these diseases. It remains under
debate whether defective mitophagy plays a causal role in the

FIG. 6. Hypoxia-mediated regulation of mitochondrial homeostasis. In response to hypoxia, the decreased level of O2

triggers mitochondrial biogenesis via the hypoxia-induced activation of the AMPK/PGC-1a pathway or NO production via the
hypoxia-induced activation of NOS. It has also been reported that hypoxia-stabilized HIF-1a suppresses mitochondrial biogenesis
by inhibiting the expression of mitochondria-associated genes via the FOXO3A-mediated inhibition of the transcription factor
Myc. In contrast, hypoxia and hypoxia-stabilized HIF-1a are involved in hypoxia-induced mitophagy. At the transcriptional level,
the mitophagy receptors NIX and BNIP3 are up-regulated, inducing the removal of dysfunctional mitochondria. Alternatively,
the hypoxia-induced degradation of BCL-XL releases the phosphatase PGAM5, facilitating the dephosphorylation of FUNDC1
at Ser13, which activates its mitophagic activity. Hypoxia-induced mitochondrial biogenesis and mitophagy ensure the ho-
meostasis between cellular energy demands and redox homeostasis. AMPK, AMP-activated protein kinase; FOXO, forkhead box
O; NO, nitric oxide; NOS, nitric oxide synthase; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha.
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

HYPOXIA ACTIVATION OF MITOPHAGY 1039

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2014.6204&iName=master.img-006.jpg&w=420&h=291


pathogenesis of diseases or the accumulation of dysfunc-
tional mitochondria is merely a consequence of an accom-
panying cellular event associated with these diseases (20, 87).

Mitophagy and cancer

In the early 1920s, Warburg found that cancer cells display
a metabolic shift from oxidative phosphorylation to glycol-
ysis, which is referred to as the ‘‘Warburg effect’’ (145).
Extensive studies in recent decades have revealed the role of
mitochondrial dysfunction anaerobic glycolysis in cancer
cells. Autophagy was suggested to play opposing roles in
tumorigenesis depending on the cellular context. Autophagy
may suppress tumorigenesis by eliminating the harmful
macromolecules or diminishing ROS production during the
early onset of tumorigenesis. Alternatively, autophagy may
promote tumorigenesis by sustaining tumor cell survival
under the hypoxic conditions of the tumor during the late
stage of tumor growth. Furthermore, in addition to the alle-
viation of oxidative stress by ROS scavengers and the
maintenance of mitochondrial genetic stability, mitophagy,
as the primary mechanism for the removal of damaged mi-
tochondria, emerges as a key repressor of carcinogenesis.
SH3-domain GRB2-like endophilin B1, which is also known
as BIF-1 (SH3GLB1), a reported component of the Beclin1
complex (133), regulates the post-Golgi trafficking of
membrane-integrated ATG9A during autophagy (135).
SH3GLB1-deficient mice are susceptible to the development
of spontaneous tumors, indicating that SH3GLB1 serves as a
tumor suppressor (133). In addition, SH3GLB1 was recently
found to mediate the removal of dysfunctional mitochondria
via mitophagy in Myc-induced lymphoma cells. Loss of
SH3GLB1 suppresses mitophagy, inhibits caspase-3 activa-
tion, and promotes Myc-induced genomic instability and
lymphoma development, emphasizing the tumor-suppressive
role of mitophagy (134). In contrast, mitophagy appears
to promote tumorigenesis. Oncogenic K-Ras induces mito-
phagy during cell transformation, and this mitophagy may
serve as an important cellular strategy to overcome cellular
energy deficiency due to insufficient glucose import by ex-
pediting glycolysis, thereby promoting cancer development
(68). The accumulation of dysfunctional mitochondria due
to deficient mitophagy likely contributes to the Warburg ef-
fect. It remains to be determined whether abnormal receptor-
mediated mitophagy is causally associated with cancer.

Mitophagy and neurodegenerative diseases

Neurodegenerative diseases, including Parkinson’s dis-
ease, Alzheimer’s disease, and Huntington’s disease, are a
large group of disabling disorders of the nervous system,
characterized by the progressive loss of neuronal structure or
function. The high energy demands of neurons, due to their
numerous neuronal processes, is critically dependent on O2

supply and mitochondrial integrity (107). Studies in past
decades showed that mitochondrial damage in neurons and
the subsequent induction of neuronal death are strongly as-
sociated with the pathogenesis of neurodegenerative disease
(31, 81). The extensive examination of PINK1-PARKIN-
mediated mitophagy has revealed a very close relationship
between mitophagy deficiency and Parkinson’s disease,
as discussed earlier. However, conclusive evidence of the
role of PINK1-PARKIN-mediated mitophagy in Parkinson’s

disease pathogenesis has yet to be presented, as most of the
reported studies were performed using cultured cells, and
Pink1 or Parkin knockout mice failed to faithfully recapitu-
late Parkinson’s disease (59). In addition to Parkinson’s
disease, mitochondrial damage and mitophagy deficiency
appear to be related to Alzheimer’s disease. Specifically,
b-amyloid fragments have been found to accumulate in
mitochondria and disrupt mitochondrial function, inducing
oxidative stress (13, 14, 88). Furthermore, mitochondrial
dysfunction, including loss of the mitochondrial membrane
potential, decreased respiratory ability, and changes in mi-
tochondrial structure, are detected in Huntington’s disease
patients (8). A recent study demonstrated a primary defect in
the ability of autophagic vacuoles to recognize cytosolic
cargo in cells isolated from humans with Huntington’s dis-
ease, as well as an abnormal mitochondrial turnover rate in
these cells, indicating a protective role of mitophagy and a
mitophagy defect in Huntington’s disease pathogenesis (94).

Mitophagy and metabolic disorder

Mitophagy is suggested to finely tune metabolic progress
by regulating mitochondrial mass. The accumulation of
damaged mitochondria and mitophagy deficiency are ob-
served in metabolic syndrome (148). Adipose-specific Atg7
knockout mice exhibit a lean phenotype, with *20% of the
adipose mass of wild-type mice. This result is likely attrib-
uted to increased b-oxidation, reduced rates of hormone-
induced lipolysis, decreased plasma concentrations of leptin,
and higher levels of basal physical activity. These mutant
mice are also resistant to high-fat diet-induced obesity and
insulin resistance. High levels of mitochondria are detected
in both white and brown adipose tissue in these mutant
mice, demonstrating the association between the autophagy-
mediated regulation of mitochondrial mass and metabolic
disorder (158). Deficiency of Bnip3, an identified mitophagy
receptor, leads to the obese phenotype, including increased
lipogenesis and reduced b-oxidation in the liver, accompa-
nied by elevated mitochondrial mass and loss of mitochondrial
function (40). In addition, PARKIN-mediated mitophagy has
been found to maintain insulin secretion and protect mice from
type 1 diabetes (51).

Perspectives

Mitochondrial function is the principal oxygen consumer.
Under hypoxia, the immediate response of the cell may be to
reduce or even stop the reactions that utilize oxygen. Mi-
tochondria are able to sense this hypoxic signaling to perform
subsequent responses. On the one hand, the decrease in ATP
and increase in NO activate AMPK or PGC-1a, respectively,
which may activate mitochondrial biogenesis as a compen-
satory response for the loss of energy. On the other hand,
mitochondria as cargoes are subject to destruction via mito-
phagy in response to both oxidative damage and hypoxic
conditions. Currently, the mechanisms underlying hypoxia-
induced activation of mitophagy, including transcriptional
regulation of NIX or BNIP3 by HIF-1, are understood to be
distinct. Hypoxia also immediately activates mitophagy via
the reversible phosphorylation of mitophagy receptors, such
as FUNDC1. Specifically, hypoxia promotes the degradation
of BCL-XL, which releases PGAM5, facilitating its activa-
tion and dephosphorylation of FUNDC1. It is clear that
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hypoxia plays opposing roles in both mitochondrial biogen-
esis and mitophagy, depending on the acuteness and duration
of the hypoxic conditions and the cellular context. The pre-
cise mechanism by which mitochondria sense and integrate
these distinct cellular or environmental cues to establish
mitochondrial homeostasis requires further investigation. As
the predominant mechanism that regulates mitochondrial
quantity and quality, mitophagy has been suggested to play a
protective role in aging-related diseases. Although the causal
association between mitophagy and the occurrence of these
diseases remains elusive, the hypoxia-induced activation of
mitophagy should be explored to search for preventive or
therapeutic strategies to treat these diseases.
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AMPK¼AMP-activated protein kinase
ATF4¼ activating transcription factor 4

Atg¼ autophagy-related genes
ATP¼ adenosine triphosphate

BCL2¼B-cell lymphoma 2
BCL-XL¼B-cell lymphoma-extra large

BH3¼BCL2 homology 3 domain
BNIP3¼BCL2/adenovirus E1B 19-kDa-interacting

protein 3
CHOP¼CCAAT-enhancer-binding protein

homologous protein
CK2¼ casein kinase-2

CMA¼ chaperone-mediated autophagy
ER¼ endoplasmic reticulum

FOXO¼ forkhead box O
FUNDC1¼ FUN14 domain containing 1

GABARAP¼GABAA receptor-associated protein
HIF-1¼ hypoxia-inducible factor-1
HRE¼ hypoxia response element
KHC¼ kinesin-1 heavy chain
LC3¼microtubule-associated protein 1A/1B-light

chain 3
LIR¼LC3-interacting region

MAPK¼mitogen-activated protein kinases
MEF¼mouse embryo fibroblast

MFN1/2¼mitofusin 1/2
Miro¼mitochondrial RHO GTPase

mTOR¼mammalian target of rapamycin
NO¼ nitric oxide

NOS¼ nitric oxide synthase
PARL¼ presenilin-associated rhomboid-like protease
PERK¼ double-stranded RNA-activated protein

kinase-like endoplasmic reticulum kinase
PGAM5¼ phosphoglycerate mutase family member 5
PGC-1a¼ peroxisome proliferator-activated receptor

gamma coactivator 1-alpha
PHD¼ prolyl hydroxylase domain

PINK1¼ PTEN-induced putative kinase 1
ROS¼ reactive oxygen species

SH3GLB1¼ SH3-domain GRB2-like endophilin B1
TIM¼ translocase of the inner mitochondrial

membrane
TOM¼ translocase of the outer mitochondrial

membrane
ULK1¼UNC-51-like kinase-1

UPR¼ unfolded protein response
VDAC¼ voltage-dependent anion channel

VHL¼ von Hippel-Lindau tumor suppressor protein
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