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Abstract
Background: Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although
significant progress has been made in understanding the downstream signaling cascade of this
pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis.

Methods: To identify potential genes regulated by Wnt/β-catenin pathway and involved in
apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit
the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed
an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide
microarrays, a series of differential expression of genes was identified and further confirmed by RT-
PCR.

Results: Stably integrated inducible RNAi vector could effectively suppress β-catenin expression
and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner
made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic
pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant
alteration in their expression level after the knockdown of β-catenin.

Conclusion: Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a
versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better
understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed
or indirected target genes may represent excellent targets to limit tumor growth.
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Background
The Wnt/β-catenin pathway has key roles in embryonic
patterning and cell-fate determination [1,2]. Defects in
this pathway have also been implicated in human cancers
[3-5]. It is believed that accumulation of β-catenin in the
cytoplasm favors its translocation to the nucleus as a
cofactor for transcription factors of the T-cell factor/lym-
phoid enhancing factor (TCF/LEF) family and activates
the transcription of Wnt/β-catenin target genes, which reg-
ulates cell proliferation and differentiation [3]. Although
significant progress has been made in understanding the
downstream signaling cascade of Wnt/β-catenin pathway,
the precise role of this pathway in apoptosis remains
unclear. Previous studies demonstrated that inhibiting the
activity of Wnt/β-catenin pathway induced apoptosis;
meanwhile, activation of this pathway inhibited chemo-
therapy-induced apoptosis [6]. Thus, Wnt/β-catenin path-
way may be associated with cellular apoptosis. Despite of
these findings, the molecular mechanisms by which Wnt/
β-catenin pathway regulates apoptosis are unclear until
now. Chen et al. found that Wnt-1-mediated β-catenin/
TCF transcription was responsible for providing protec-
tion against apoptosis [7]. However, so far, only a small
number of target genes regulated by Wnt/β-catenin have
been characterized [3]. Even less is known about tran-
scriptionally regulated genes at the genome-wide scale
that contribute to the apoptosis effect.

The advent of RNA interference (RNAi)-directed knock-
down has sparked a revolution in somatic cell genetics,
allowing the inexpensive, rapid analysis of gene function
in mammals [8-10]. RNAi effects can be achieved by trans-
fection of short synthetic double stranded RNA molecules
or gene expression vectors that direct their production in
the cell. These small interfering RNA (siRNA) expression
vectors have several advantages over chemically synthetic
siRNA: they can be stably introduced into cells, and they
are relatively less expensive and more efficient. However,
as with conventional knockout strategies, stably intro-
duced siRNA vectors cannot be used when the target is
essential for cellular survival. Recently, van de Wetering et
al. developed a doxycycline (DOX)-inducible form of the
RNA polymerase III H1 promoter to drive siRNA expres-
sion, which could inducibly knockdown the expression of
target genes [11]. With the help of this inducible system,
we successfully downregulated the expression of β-catenin
in HeLa cells by addition of DOX to the growth medium.
We found that decreased expression of β-catenin in this
manner reduced the transcriptional activity of β-catenin/
TCF and promoted the death of cells. To further investi-
gate the potential mechanisms underlying the role of
Wnt/β-catenin pathway in apoptosis, we designed an oli-
gonucleotide microarray covering 1384 apoptosis-related
genes. We then performed microarray analysis to visualize
differential gene regulation before vs. after induction. A

series of differential expression genes due to reduced
expression of β-catenin was identified and confirmed by
RT-PCR. These genes have been implicated in apoptosis
but never linked to Wnt/β-catenin pathway before. Since
apoptosis is critical for normal embryonic development
and for homeostasis in adult tissues, cancellation of this
process with increased resistance to cell death is a com-
mon feature of malignant cells and represents a significant
obstacle to therapy of human cancers [12,13], some of the
identified β-catenin/TCF directed or indirected target
genes may represent excellent targets to limit tumor
growth.

Methods
Cell line and tissue culture
The parental T-REx™-HeLa cells (Invitrogen, abbreviated
to HeLaT), stably expressing the tetracycline repressor pro-
tein were grown in DMEM (Invitrogen) supplemented
with 10% fetal bovine serum (Gibco BRL), 50 units/ml
penicillin, 50 units/ml streptomycin and 5 µg/ml blastici-
din. These cells were maintained in a humidified 37°C
incubator with 5% CO2, fed every 3 days with complete
medium supplemented with 5 µg/ml blasticidin, and sub-
cultured when confluence was reached.

Plasmids, transfection and generation of stable pTER cell 
line
The plasmid pTER-β-catenin, which encodes a short hair-
pin RNA (shRNA) against human β-catenin driven by a
DOX-inducible form of the RNA polymerase III H1 pro-
moter, was a kind gift from Dr. M. van de Wetering and
Prof. H. Clevers (Hubrecht Laboratory, Center for Bio-
medical Genetics, Utrecht, The Netherlands) [11]. TOP-
FLASH, FOPFLASH were purchased from Upstate and
pRL-TK was purchased from Promega.

Transfections were performed in 6-well or 24-well plates.
A total of 2 × 105 cells were seeded into each well of a six-
well tissue culture plate (Costar).The next day when the
cells were 70–80% confluent the culture medium was
aspirated, and the cell monolayer was washed with pre-
warmed sterile phosphate buffered saline (PBS). Cells
were transfected with the appropriate plasmids using
LipofectAMINE™ 2000 Reagent (Invitrogen) according to
the manufacturer's protocol. The cells were harvested at
different time points. Western blot analysis or other exper-
iments were performed.

For the establishment of stable transfectants of pTER-β-
catenin, after transfection, HeLaT cells were selected with
200 µg/ml Zeocin, and resistant clones were mixed and
cultured. Zeocin-resistant clones were tested for their abil-
ity to downregulate β-catenin by Western blot and RT-
PCR. The resulting resistant clones populations were des-
ignated HeLaT-β-catenin-RNAi.
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Isolation of total RNA
Total RNA was extracted from cells by using TRIZOL Rea-
gent (Invitrogen) according to the standard protocol. The
integrity of the RNA samples was determined by electro-
phoresis through agarose gels and staining with ethidium
bromide, and the 18S and 28S RNA bands were visualized
under UV light. RNA was stored at -80°C in RNase-free
water until reverse transcription or fluorescence labeling.

Western blot analyze and RT-PCR
HeLaT-β-catenin-RNAi cells were grown in the presence or
absence of DOX (2 µg/ml). For Western blot analysis, cells
were harvested at different time points and lysed in lysis
buffer, then Western blot analysis was performed with the
use of conventional protocols as described previously
[14]. In brief, total proteins were separated by SDS-PAGE,
then transferred to nitrocellulose membranes (PRO-
TRAN). The antibodies and dilutions used included anti-
β-catenin (C19220; 1:5000; BD Transduction Laborato-
ries), anti-β-actin (AC-15; 1:5000; Sigma), and after exten-
sive washing the membranes were incubated with anti-

mouse IgG-horseradish peroxidase conjugate antibody
(Zhongshan Company) for 1 h at room temperature and
developed with a Luminol chemiluminescence detection
kit (Santa Cruz). Membranes were reprobed for β-actin to
normalize for loading and to allow for accurate quantifi-
cation. Protein expression was quantified using a Gel
EDAS 293 analysis system (Cold Spring USA Corpora-
tion) and Gel-Pro Analyzer 3.1 software (Media Cybernet-
ics).

For RT-PCR, total RNA (5 µg) was used for cDNA synthe-
sis by reverse transcription using mouse-mammary tumor
virus (M-MLV) Reverse Transcriptase (Promega), accord-
ing to the manufacturer's protocol in a total volume of 25
µl. All PCR reactions were performed using standard PCR
conditions: 95°C 5 min, 95°C 1 min, annealing at differ-
ent temperatures for each gene respectively 1 min (Table
1), extension 72°C 1 min for 30 cycles, and a final exten-
sion at 72°C for 10 min. The PCR products were visual-
ized by electrophoresis in 2% agarose gels, followed by
staining with ethidium bromide, and quantified using a

Table 1: RT-PCR primer sequences and annealing temperatures for validation of microarray expression data.

Gene symbol PCR primer sequences Annealing (°C) PCR-based 
expression

Chip-based 
expression

CTNNB1 1 st CCTGGTGCTGACTATCCAGT 52 Down Down
2nd ACTTCCACACATGATCACAT

VEGF 1 st GAGGGCAGAATCATCACGAA 62 Down NA
2nd AACGCTCCAGGACTTATACC

Cox2 1 st CGAGGTGTATGTATGAGTGT 60 Down NA
2nd AGGGAGTCGGGCAATC

Id2 1 st CCGCTCGAGACCATGAAAGCCTTCAGTCCCGTGAGG 61 Down NA
2nd CGGGATCCTTGCCACACAGTGCTTTGCTG

Gastrin 1 st CGGAATTCACCATGCAGCGACTATGTG 58 Down NA
2nd CGGGATCCATGTTCTCATCCTCAGCACT

MMP7 1 st TGTTAAACTCCCGCGTCATA 58 Down NA
2nd GCGTTCATCCTCATCGAAGT

CD44 1 st CCATCCTCGTCCCGTCCT 56 Down NA
2nd GCCCTTCTATGAACCCATACCT

MYBL2 1 st CTCATCTTGTCCTGAGGTGT 56 Up Up
2nd TGAGGCCAGGCCTGACGTG

BAG3 1 st AGCCATCCTGGAGAAGGTAC 56 Up Up
2nd GGCACCCATCTCCATGATTG

PTEN 1 st CCACCACAGCTAGAACTTA 52 Up Up
2nd CAACAGTGCCACTGGTCTA

PDCD6IP 1 st CTCGGCTCTGTTAGTGTAAC 52 Up Up
2nd CACTTCTGACTAGTTCCTCT

HIF1A 1 st GATACCAACAGTAACCAACCT 52 Up Up
2nd CCGGTTTAAGGACACATTCT

BAG2 1 st GAAGATCTATGGCTCAGGCGAAGAT 56 Up Up
2nd ATTTGCGGCCGCCTAATTGAATCTGCTTTCAGC

DAP3 1 st CCTCCTAGTGGCCGTGGATG 56 Up Up
2nd GCGTTACTTAGGAACAGCAG

β-actin 1 st GGCGGCACCACCATGTACCCT 56 Control NA
2nd AGGGGCCGGACTCGTCATACT

Genes marked "NA" were not included in the 130 differentially regulated genes (listed in Additional Table 2); "Down" and "Up" refer to the 
expression levels in induced vs. control cells.
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Gel EDAS 290 analysis system (Cold Spring USA Corpora-
tion) and Gel-Pro Analyzer 3.1 software (Media Cybernet-
ics). Primer sequences are listed in Table 1.

Reporter assay
To measure the transcriptional activity of β-catenin/TCF, a
luciferase reporter assay was performed using the TCF
reporter constructs TOPFLASH and FOPFLASH. Cells were
replated and transfected in 24-well plates, with either
TOPFLASH or FOPFLASH (100 ng) and the internal con-
trol plasmid pRL-TK (5 ng) using LipofectAMINE™ 2000
Reagent (Invitrogen). The TOPFLASH and FOPFLASH
reporters contain two sets of three copies of wild-type or
mutant β-catenin/TCF binding sites respectively as well as
the Thymidine Kinase (TK) minimal promoter upstream
of the Firefly Luciferase open reading frame. After transfec-
tion, cells were treated with or without DOX (2 µg/ml) for
3 days. Then, luciferase activity was determined using the
Dual-luciferase reporter assay system (Promega). Firefly
luciferase activity was normalized to Renilla luciferase
activity. All results are expressed as means ± SD for inde-
pendent triplicate cultures.

TdT-mediated dUTP nick end labeling (TUNEL) assay
Apoptotic cells were confirmed with the in situ cell death
detection kit, Alkaline Phosphatase (Roche Applied Sci-
ence), in accordance with the manufacturer's instructions.
In brief, HeLaT-β-catenin-RNAi cells were grown on cov-
erslips. The next day, cells were treated with or without
DOX (2 µg/ml) for 3 days. Coverslips with adherent cells
were fixed in 4% paraformaldehyde for 1 h at room tem-
perature and permeabilized with 0.1% Triton X-100 for 2
min on ice. DNA fragments were labeled with the TUNEL
reaction mixture for 60 min at 37°C in a humidified
atmosphere in the dark. The coverslips were then incu-
bated with Converter alkaline phosphatase for 30 min at
37°C in a humidified chamber, rinsed in PBS, and incu-
bated with nitro blue tetrazolium/5-bromo-4-chloroin-

dol-3-yl phosphate (Roche Applied Science) for 10 min.
Cells were mounted cell side downward on a microscope
slide, and the apoptotic cells (dark blue staining) were
counted under a microscope. Three fields were randomly
counted for each sample.

Microarray designing and expression profiling
A total of 1384 apoptosis-related genes were selected.
Probes against these genes were designed with
OligoArray2_1 (University of Michigan). The oligonucle-
otide probes were synthesized and spotted as described
previously [15]. The oligonucleotide microarray covers
1384 apoptosis-related sequences and some controls. For
the microarray analysis, 50–100 µg of DNA-free total RNA
from control or induced cells was reverse transcribed and
labeled with Cy3 or Cy5 and then hybridized to the oligo-
nucleotide microarray. Data acquisition and data analysis
were performed using a GenePix 4000B scanner and
GenePix Pro 5.1 software (Axon Instruments). Detailed
information about the oligonucleotide microarray pro-
duction, microarray analysis and data is available at http:/
/gpcrome.cbi.pku.edu.cn:2005/chip.

Statistical analysis
Expression ratios of the analysed genes were calculated
comparing genes' expression values of HeLaT-β-catenin-
RNAi cells treated with or without DOX(see Additional
file1) A 1.5-fold or higher level of target genes' expression
ratio in at least three of the five repeated experiments was
considered. SPSS for Windows 10.0 (SPSS Inc.) was used
to analyze the data. Two-tailed unpaired Student's t test
was used to compare the statistical significance of the dif-
ferences in data from two groups. Values of P < 0.05 were
considered statistically significant (see Additional file 2).
Moreover, referenced data from SAM was calculated (see
Additional file 3).

Results
Inducible reduction of β-catenin expression in stable pTER 
transfectants
T-REx™-HeLa (HeLaT) cells that stably expressed the tetra-
cycline (Tet) repressor were transfected with pTER-β-cat-
enin and selected with Zeocin. Stable transfectants were
analyzed for β-catenin expression by Western blot and RT-
PCR before and after DOX induction. The protein level of
β-catenin was reduced within 1 day after treatment and
completely suppressed on the third day (Figure 1). Mean-
while, mRNA level of β-catenin was also significantly
reduced after 3 days of treatment as demonstrated by RT-
PCR (Figure 2b) and microarray analysis (Figure 4). The
inhibitory effect was shown to be specific because treat-
ment of the parental HeLaT cells with DOX did not alter
β-catenin levels (data not shown). In addition, expression
of β-actin was not affected by DOX, showing the specifi-
city of the knockdown. These data indicate that the stably

Reduction of β-catenin expression in stable pTER transfect-antsFigure 1
Reduction of β-catenin expression in stable pTER 
transfectants. Exponentially proliferating HeLaT-β-catenin-
RNAi cells were treated with DOX and whole cell lysates 
were prepared at the time points indicated. Total cell lysates 
were separated by SDS-PAGE and immunoblotted with an 
antibody to β-catenin, expression levels were normalized for 
loading by probing for β-actin.
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integrated inducible RNAi vector could effectively sup-
press β-catenin expression and result in prolonged
decreases in specific cellular gene expression without
marked effects on other cellular proteins.

Downregulation of β-catenin/TCF-driven transcription on 
knockdown of β-catenin
We then investigated the effects of β-catenin knockdown
on the transcriptional activity of β-catenin/TCF [14]. The
luciferase reporters TOPFLASH and FOPFLASH, which
have a minimal Thymidine Kinase (TK) promoter and
either wild type (TOP) or mutated (FOP) binding sites for
the β-catenin/TCF complex, have been widely used to
characterize the transcriptional activity of β-catenin/TCF
[16]. These reporter constructs were transfected into
HeLaT-β-catenin-RNAi cells, and luciferase activity was
determined after 3 days of treatment with DOX.

We found that the spontaneous activity of the TCF
reporter, TOPFLASH, was reduced to background (FOP-
FLASH) levels on reduction of β-catenin levels by the
induced expression of pTER-β-catenin by DOX (Figure

2a). There was little effect of induction on the FOPFLASH
reporter (Figure 2a).

To determine whether downregulation of β-catenin in this
manner leads to decreased expression of β-catenin/TCF
regulated genes, we investigated the effect of induction on
the expression of several cellular genes known to be regu-
lated by β-catenin/TCF. The endogenous mRNA expres-
sion levels of Vascular endothelial growth factor (VEGF)
[17], cyclooxygenase-2 (Cox2) [18], Inhibitor of differentia-
tion protein 2 (Id2) [19], Gastrin [20], Matrix metalloprotei-
nase-7 (MMP7) [21,22] and CD44 [23], but not β-actin,
were all reduced after treatment with DOX (Figure 2b;
Table 1).

These results indicate that inducible knockdown of β-cat-
enin by the stably integrated RNAi vector pTER-β-catenin
in HeLaT cells results in the downregulation the β-cat-
enin/TCF-dependent gene expression.

Induction of apoptosis by RNAi depletion of β-catenin
Previous studies demonstrated that inhibiting the activity
of Wnt/β-catenin pathway induced apoptosis [6]. To

Downregulation of β-catenin/TCF-driven transcription on knockdown of β-cateninFigure 2
Downregulation of β-catenin/TCF-driven transcription on knockdown of β-catenin. (a) HeLaT-β-catenin-RNAi 
cells were transfected with TOPFLASH or FOPFLASH luciferase reporter construct. After 3 days with or without DOX treat-
ment, luciferase reporter gene expression was determined. The pRL-TK Renilla luciferase reporter construct was co-trans-
fected in each sample to normalize transfection efficiency. The activity of the reporter luciferase is expressed relative to the 
activity in control cells, which is defined as 1.0. All experiments were performed in triplicate and are expressed as means and 
SD. (b) Relative expression levels of known β-catenin/TCF target genes in the HeLaT-β-catenin-RNAi cells following treat-
ment with DOX, as measured by semi-quantitative RT-PCR. β-actin expression is used as a control.
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determine whether depletion of β-catenin by inducible
RNAi could promote the death of cells, TUNEL assay was
performed. HeLaT-β-catenin-RNAi cells were treated with
or without DOX (2 µg/ml) for 3 days. These cells were
then analyzed by TUNEL assay (Figure 3). About 38%
cells were TUNEL-positive in the DOX group (Figure 3b),
compared with 13% in the control group (Figure 3a) (P <
0.01). These data suggested that depletion of β-catenin by
RNAi in HeLaT-β-catenin-RNAi cells made the cells more
sensitive to apoptosis.

Analysis and validation of oligonucleotide microarray 
assay following decreased expression of β-catenin
The data we show above and previous studies suggest that
Wnt/β-catenin pathway may be associated with cellular
apoptosis. However, the molecular mechanisms by which
Wnt/β-catenin pathway regulate apoptosis are unclear
until now. Chen et al. found that Wnt-mediated β-cat-
enin/TCF transcription was responsible for providing pro-
tection against apoptosis [7]. To systematically investigate
Wnt/β-catenin regulated genes at the genome-wide scale
that contribute to the apoptosis effect, oligonucleotide
microarray analysis was performed. The HeLaT-β-catenin-
RNAi cells were induced with DOX. After 3 days, 50–100
µg of DNA-free total RNA from control or induced cells
was reverse transcribed and labeled with Cy3 or Cy5 and
then hybridized to the oligonucleotide microarray con-
taining 1384 apoptosis-related genes (Additional Table
1). Microarray experiments were performed comparing
induced vs. control HeLaT-β-catenin-RNAi cells. Duplicate
experiments were carried out on a single total RNA prepa-
ration from the cells.

In this study, 130 differential expression genes due to
reduced expression of β-catenin were identified (Table 2;
Additional Table 2). Figure 4 and Table 2 show the altera-
tion levels of several differential expression genes in con-
trol vs. induced cells. We found that the mRNA level of β-
catenin (CTNNB1) was markedly reduced after induction
with DOX, demonstrating the effectiveness of the RNAi
system. Meanwhile, several apoptosis-related genes, such
as MYBL2, BAG3, PTEN, PDCD6IP, HIF1A, BAG2 and
DAP3, were significantly upregulated (P < 0.05) (Figure 4;
Table 1 and 2).

To determine the gene expression level of specific Wnt/β-
catenin regulated genes, semi-quantitative RT-PCR analy-
sis was used. A panel of 8 genes, randomly selected among
the 130 identified by microarray analysis, was analyzed.
We confirmed this by RT-PCR downregulation of
CTNNB1 and upregulation of MYBL2, BAG3, PTEN,
PDCD6IP, HIF1A, BAG2 and DAP3 (Figure 5; Table 1). All
of these genes showed a comparable alteration between
microarray assay and semi-quantitative RT-PCR analysis.
Our data suggest that some of these apoptosis-related
genes may be regulated by Wnt/β-catenin pathway and
involved in the molecular mechanisms by which Wnt/β-
catenin pathway regulates apoptosis.

Discussion
Wnt/β-catenin pathway is involved in various differentia-
tion events during embryonic development and leads to a
range of diseases, most notably cancer, when aberrantly
activated [3-5]. It has been demonstrated that this path-
way not only plays a role in the promotion of cell prolif-

Apoptosis induced by depletion of β-cateninFigure 3
Apoptosis induced by depletion of β-catenin. HeLaT-β-catenin-RNAi cells were grown on coverslips and treated without 
(a) or with (b) DOX. After 3 days, cells were analyzed for apoptosis with the TUNEL assay. Dark-blue staining of nuclei indi-
cates apoptosis.
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eration and cell cycle progression, but also may provide
an important survival function to facilitate cell transfor-
mation. Inhibition of the activity of Wnt/β-catenin path-
way induces apoptosis in some cancer cell lines [24-36].
Meanwhile, activation of the Wnt/β-catenin pathway
inhibits apoptosis in some lines [37-41]. In addition, de
la Taille et al. demonstrated that Wnt/β-catenin pathway
plays a role in the progression of human prostate cancer,
especially to the acquisition of apoptosis-resistant pheno-
type [42]. In spite of these findings, the molecular mech-
anisms by which Wnt/β-catenin pathway exerts its effect
on cellular apoptosis are not understood.

In our study, the HeLaT cells that stably expressed the Tet
repressor were transfected with pTER-β-catenin and
selected using Zeocin [11]. The resulting stable transfect-
ants were analyzed for β-catenin expression by Western
blot and RT-PCR before and after DOX induction. The

mRNA and protein levels of β-catenin were significantly
reduced after 3 days of treatment. We then investigated
the effects of β-catenin knockdown on TCF reporter activ-
ity. The spontaneous activity of the TCF reporter (TOP-
FLASH) was reduced to background levels on reduction of
β-catenin levels by the induced expression of pTER-β-cat-
enin by DOX. Meanwhile, the expression levels of several
cellular genes known to be regulated by β-catenin/TCF
were all reduced after treatment with DOX. These results
indicate that after induction by DOX, not only the expres-
sion levels of β-catenin, but the transcriptional activity of
β-catenin/TCF is significantly inhibited in HeLaT cells. We
also found that depletion of β-catenin in this manner
made the cells more sensitive to apoptosis by TUNEL
assay. However, Cobas et al. demonstrated that there was
no evidence of induced apoptosis in bone marrow pro-
genitors when β-catenin gene was inactivated by an induc-
ible Cre-loxP-mediated system [43]. This suggests that the

Microarray cluster analysis demonstrating differentially expressed genes in HeLaT-β-catenin-RNAi cells treated with DOXFigure 4
Microarray cluster analysis demonstrating differentially expressed genes in HeLaT-β-catenin-RNAi cells 
treated with DOX. After 3 days of treatment, 50–100 µg of DNA-free total RNA from control or induced cells was reverse 
transcribed and labeled with Cy3 or Cy5 and then hybridized to the oligonucleotide microarray containing 1384 apoptosis-
related genes. Microarray experiments were performed comparing induced vs. control cells. Shown here are the intensity 
ratios of 5 separate experiments (a) or means ± S.D (b). The color bar represents the intensity ratio of induced vs. control 
cells.
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effects observed in our current study are likely to be cell
type specific.

It is well known that Wnt/β-catenin pathway regulates the
transcription of a suite of genes controlling numerous
aspects of development and human diseases, ranging
from cellular proliferation, differentiation and apoptosis
[3,4]. However, little is known about how Wnt/β-catenin
pathway regulates the expression of apoptosis-related
genes. Microarray technology provides a tool to detailed
study the regulation of gene expression [44]. To further
elucidate the role of Wnt/β-catenin pathway in apoptosis,
we designed a microarray covering 1384 apoptosis-related
genes. The 130 differentially regulated genes presented in
this expression profiling analysis were identified using
stringent selection criteria and are candidates for direct or
indirect targets of Wnt/β-catenin pathway, which may
play critical roles in tumorigenesis in certain tumors. This
set of regulated genes is highly significant due to statistical
procedures (t test, P < 0.05). The significance of the oligo-
nucleotide microarray expression data is further sup-
ported by RT-PCR. Confirmation of 8 regulated genes by
RT-PCR provides experimental support for the reliability
of the microarray data.

The overall pattern of gene expression observed in
response to the inhibition of Wnt/β-catenin pathway by
inducible RNAi vector against β-catenin has important
implications for elucidating the role of this pathway in
apoptosis. Of particular interest are those genes that have
been implicated in several cell-survival pathways, such as
Phosphatase and tensin homolog (PTEN)-Phosphatidyli-
nositol 3-kinase (PI3K)-AKT pathway [45-47], NF-κB
pathway [48,49] and p53 pathway [50]. For example,
PTEN, which negatively regulates the PI3K-AKT survival

pathway, was upregulated after DOX treatment. Elevated
expression of PTEN may inhibit the activity of PI3K-AKT
pathway and induce these cells to apoptosis. Consistent
with our results, it has been demonstrated that Wnt path-
way regulates cellular apoptosis by PI3K-AKT pathway
[37,40]. Similarly, NFKBIA, the gene coding for IκBα,
which retains NF-κB dimers in the cytoplasm to prevent
the activation of NF-κB pathway [49], was also upregu-
lated after induction. Also, inhibition of NF-κB pathway
induces apoptosis [48,49]. This is consistent with the
report from Bournat et al. They demonstrated that expres-
sion of Wnt-1 increases survival of PC12 cells in the
absence of serum by activating the anti-apoptotic factor
NF-κB [51]. We also found that a p53-binding gene
TP53BP1 and a p53-induced gene TP53I11 were elevated
after the inhibited activity of Wnt/β-catenin by treatment.
The 53BP1 encoded by TP53BP1 gene was found to be
able to bind p53 protein and enhanced p53-mediated
transcriptional activation [52,53]. Meanwhile, TP53I11, a
direct p53 target gene, was proved to induce cell apoptosis
and enhance the apoptotic effects of arsenic trioxide [54].
These data suggest that inhibition the Wnt/β-catenin
pathway by pTER-β-catenin may lead to elevated p53
activity, which can induce apoptosis under some circum-
stances [50]. Other pro-apoptotic genes, such as Pro-
grammed cell death 5 (PDCD5) [55], Death-associated
protein 3 (DAP3) [56] and Fas-associated via death domain
(FADD) [57], were all significantly up-regulated after
induction of RNAi against β-catenin by DOX and may
play a role in promoting apoptosis of these cells. Paradox-
ically, papers from Jablons's group suggest that an inhibi-
tor of apoptosis family protein, Survivin, may play a role
in mediating the functions of Wnt/β-catenin pathway in
apoptosis [27,30,31]. However, in our system, the altera-
tion of Survivin expression before and after induction is

Table 2: List of representative genes upregulated in the HeLaT-β-catenin-RNAi cells following treatment with DOX.

Gene symbol Accession Gene description Ratio meana P value

AATF GenBank:NM_012138 apoptosis antagonizing transcription factor 1.583515 0.000483
BAG2 GenBank:NM_004282 BCL2-associated athanogene 2 1.1912 0.01584154
BAG3 GenBank:NM_004281 BCL2-associated athanogene 3 1.340984 0.03940599
CTNNB1 GenBank:NM_001904 catenin (cadherin-associated protein), beta 1,88kDa 0.116545 0.00000433
DAP3 GenBank:NM_033657 death associated protein 3 1.382345 0.02268848
FADD GenBank:NM_003824 Fas (TNFRSF6)-associated via death domain 1.272306 0.01998745
HIF1A GenBank:NM_001530 hypoxia-inducible factor 1, alpha subunit(basic helix-loop-helix 

transcription factor)
1.425380 0.01105092

MYBL2 GenBank:NM_002466 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 1.594979 0. 3012066
NFKBIA GenBank:NM_020529 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

alpha
1.266071 0.01633079

PDCD5 GenBank:NM_004708 programmed cell death 5 1.429819 0.00544860
PDCD6IP GenBank:NM_013374 programmed cell death 6 interacting protein 1.515707 0.02611401
PTEN GenBank:NM_000314 phosphatase and tensin homolog (mutated in multiple advanced cancers 1) 1.568053 0.00204383
TP53BP1 GenBank:NM_005657 tumor protein p53 binding protein 1 1.272044 0.00446432
TP53I11 GenBank:NM_006034 tumor protein p53 inducible protein 11 1.343337 0.00532453

aShown here are the means of the intensity ratios of 5 separate experiments by comparing induced vs. control cells.
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not significant (data not shown). Thus, these results indi-
cate that Wnt/β-catenin mediated transcription may regu-
late other anti-apoptosis molecules yet to be identified. In
our system, most of the differentially expressed genes are
upregulated after inhibition of Wnt/β-catenin pathway.
Since inhibition of Wnt/β-catenin pathway should lead to
the downregulation of its direct target genes, we believe
that most of the differentially expressed genes are most
likely the indirect target genes of Wnt/β-catenin pathway.
The precise mechanism needs further investigation. The
data obtained from microarray suggest that inhibition of
Wnt/β-catenin pathway induces apoptosis at least in part
through upregulating the expression of several pro-apop-
totic genes, which may be involved in some important
cell-apoptotic pathways, such as PTEN-PI3K-AKT path-
way, NF-κB pathway and p53 pathway.

As evident from the examples above, assessment of differ-
entially expressed genes with known functions is useful to

monitor pathways or biologic processes that are triggered
in expression profiling experiments. In addition, microar-
ray expression profiling of β-catenin-decreasing cells iden-
tified at least 13 regulated genes that are, so far, not
annotated with an experimentally verified function, pre-
dicted biologic process or molecular function. This pro-
vides a basis for further experimental studies to provide
more direct information on gene function.

Conclusion
In summary, we successfully downregulate the expression
of β-catenin and also the transcriptional activity of Wnt/β-
catenin pathway in HeLa cells in a stably inducible man-
ner. Microarray data suggest that a series of pro-apoptotic
genes, which may be involved in some important cell-
apoptotic pathways, such as PTEN-PI3K-AKT pathway,
NF-κB pathway and p53 pathway may contribute to the
enhanced apoptosis. Further studies are needed to iden-
tify the precise mechanism underlying the Wnt/β-catenin
pathway in apoptosis.
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Validation of oligonucleotide microarray results of 8 selected genes by semi-quantitative RT-PCRFigure 5
Validation of oligonucleotide microarray results of 8 
selected genes by semi-quantitative RT-PCR. HeLaT-
β-catenin-RNAi cells were treated with or without DOX for 
3 days. RT-PCR was performed as described in Methods. 
Amplified fragments of CTNNB1, MYBL2, BAG3, PTEN, 
PDCD6IP, HIF1A, BAG2 and DAP3 genes are indicated. β-actin 
gene was used as an internal control and was amplified from 
the same samples.
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