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The effect of incubation temperature on embryonic development and offspring traits has been widely reported for
many species. However, knowledge remains limited about how such effects vary across populations. Here, we
investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development
of Asian yellow pond turtle (Mauremys mutica) eggs originating from low-latitude (Guangzhou, 23°06′N) and
high-latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the
high-latitude population than in the low-latitude population. However, this pattern was reversed at 30 °C. As the
incubation temperature increased, hatching success increased in the low-latitude population but slightly decreased
in the high-latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly
than those incubated at 26 °C in the low-latitude population. In contrast, hatchling traits were not influenced by
incubation temperature in the high-latitude population. Overall, 30 °C was a suitable developmental temperature
for embryos from the low-latitude population, whereas 26 and 28 °C were suitable for those from the high-latitude
population. This interpopulation difference in suitable developmental temperatures is consistent with the differ-
ence in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile
embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal
environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean
Society, 2015, 114, 35–43.

ADDITIONAL KEYWORDS: embryonic response – geographical variation – hatchling size – incubation
temperature – local adaptation.

INTRODUCTION

Interpopulation variation in life-history traits is
common in animal species that inhabit extensive geo-
graphical ranges (Denno & Dingle, 1981; Stearns,
1992; Iverson et al., 1993) and might reflect the com-
bined effect of both genetic and environmental factors
(Conover, Duffy & Hice, 2009). Identifying life-history
variations among populations is crucial for under-
standing the life-history adaptation of an organism in
response to distinct environments. Comparative

studies on life-history strategies are common.
However, most studies focus on postembryonic traits,
such as offspring size, adult body size, and reproduc-
tive output (Litzgus & Mousseau, 2006; Ashton,
Burke & Layne, 2007; Blanck & Lamouroux, 2007),
with fewer studies focusing on embryonic traits (but
see DiMichele & Westerman, 1997; Laugen, Laurila &
Merilä, 2003; Du et al., 2010b). Various life-history
strategies may be developed by the females and
embryos of oviparous species to enhance embryonic
development and survival under different environ-
ments. For example, females may adjust the seasonal
timing of oviposition or modify nesting behaviours in
response to climatic variation (Weisrock & Janzen,*Corresponding author. E-mail: duweiguo@ioz.ac.cn
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1999; Kolbe & Janzen, 2002; Micheli-Campbell et al.,
2013; Refsnider, Warner & Janzen, 2013). In addition,
embryos shift optimal development temperatures or
thermal tolerance in relation to environmental tem-
perature variation (Mrosovsky, 1988; Jing & Kang,
2003; Ewert, Lang & Nelson, 2005; Doody et al., 2006;
Liefting, Hoffmann & Ellers, 2009). Increasing evi-
dence indicates that embryos are able to provoke
behavioural and physiological responses to the chang-
ing environment, which challenges the traditional
view that embryos are passive to their environments
(Du et al., 2011; Du & Shine, 2014).

In oviparous species, developmental environments
have important impacts on various embryo and off-
spring traits, such as embryonic development rate,
hatchling size, and hatchling performance (Birchard
& Deeming, 2004; Deeming, 2004; Booth, 2006). Tem-
perature varies both temporally and spatially in
nature. Consequently, it is one of the most important
environmental factors that influence embryonic devel-
opment and offspring phenotypes (Ackerman & Lott,
2004; Birchard & Deeming, 2004). A number of
studies on reptiles have examined the effects of incu-
bation temperature. The incubation period decreases
nonlinearly as temperature increases, with eggs incu-
bated at intermediate temperatures having relatively
higher hatching success and producing higher-quality
hatchlings than those at extremely high or low tem-
peratures (e.g. Allsteadt & Lang, 1995; Rhen & Lang,
1999; Ji & Du, 2001; Warner & Andrews, 2002; Du &
Ji, 2003; Booth, 2006; Brown & Shine, 2006).
However, most of these studies have focused on a
single population, with less effort being focused on
interpopulation variations. The embryos of wide-
spread oviparous species may experience distinct
temperatures during development, although maternal
behaviours, such as nest selection and nesting
phenology, may compensate for geographical differ-
ences in the nest temperatures of some species (Kolbe
& Janzen, 2002; Morjan, 2003; Ewert et al., 2005;
Doody et al., 2006; Roedder, Kwet & Loetters, 2009).
However, understanding geographical variation in the
embryonic response to thermal environments has
recently received increasing attention because of
global climate-change issues (Oufiero & Angilletta,
2006; Du et al., 2010b; Sun et al., 2013), but more
studies are needed.

The responses of reptilian embryos to incubation
temperatures may vary among populations in wide-
spread species as a result of local adaptation or phe-
notypic plasticity. Temperature-dependent differences
might be present during embryonic development and
in hatchling (offspring) phenotypes (Ewert, 1985; Du
et al., 2010b). For example, embryos from high-
latitude populations develop faster than their low-
latitude conspecifics when incubated at an identical

temperature (Ewert, 1985; Oufiero & Angilletta,
2006; Du et al., 2010b; Sun et al., 2013). In the
Chinese skink, Eumeces chinensis, the optimal incu-
bation temperatures for embryonic development differ
between high-latitude and low-latitude populations
and are assumed to match the local thermal environ-
ments (Ji et al., 2002). If these phenomena occur
widely in populations of diverse species along a lati-
tudinal cline (temperatures decrease as latitude
increases), several hypotheses could be tested. First,
the incubation period is expected to be shorter for
high-latitude populations than for low-latitude popu-
lations. Second, hatching success is expected to be
maximized at higher temperatures in low-latitude
populations, and vice versa for high-latitude
populations. Third, eggs are expected to produce high-
quality hatchlings at high temperatures for low-
latitude populations, and vice versa for high-latitude
populations.

Here, we collected eggs of the Asian yellow pond
turtle (Mauremys mutica) from two geographically
distinct populations in China: the Guangdong (low-
latitude) and Haining (high-latitude) populations.
The eggs were incubated at three constant tempera-
tures (26, 28, and 30 °C) to determine the effects of
population origin and incubation temperature on
hatching success, hatchling size, and the hatchling
righting response. We used the assimilated data to
test the three stated hypotheses and infer the poten-
tial implications on the life-history traits of these two
populations.

MATERIAL AND METHODS
STUDY SPECIES

Mauremys mutica is an aquatic geoemydid turtle that
is widely distributed in southern China, Vietnam, and
Japan (the Ryukyu Archipelago) (Zhao & Adler, 1993).
In China, M. mutica may be divided into two groups
based on differences in morphological and genetic
characteristics. Specifically, the low-latitude popula-
tions form one group that is distributed in Guangxi,
Guangdong, Hainan, and Fujian provinces, whereas
the high-latitude populations form a second group
that is distributed in Anhui, Zhejiang, and Jiangsu
provinces (Zhu et al., 2008). The average genetic dis-
tance between the southern and northern populations
was found to be 0.305, according to the random ampli-
fied polymorphic DNA (RAPD) band patterns of 30
random individuals in each population (Zhu et al.,
2008). Several studies have investigated the effect of
incubation temperature on embryonic development,
hatchling phenotype (e.g. size, sex, and locomotor
performance), and posthatching growth in this species
(Zhu et al., 2006a, b; Du, Wang & Shen, 2010a; Guo
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et al., 2010). Yet, interpopulation variation in embry-
onic responses to incubation temperatures remains
unclear.

EGG COLLECTION AND INCUBATION

This species is extremely difficult, if not impossible, to
find in its natural habitat in mainland China. We
collected 84 (from 39 females) and 83 (from 34
females) fertilized eggs laid within a 2- to 3-day
period from two private hatcheries in early June and
mid-June of 2010, respectively. One hatchery was in
Guangzhou (23°06′N, 113°15′E, Guangdong, southern
China; hereafter, the low-latitude population) and
another in Haining (30°19′N, 120°25′E, Zhejiang,
eastern China; hereafter, the high-latitude popula-
tion) (Fig. 1). The Guangzhou population belongs to
the southern clade (Zhu et al., 2008), whereas the
Haining captive population belongs to the northern
clade (Chen et al., 2011). In both hatcheries, the
captive populations were kept in outdoor artificial
ponds (length × width: 20 m × 15 m) and thus were
exposed to the local thermal environment. Female
M. mutica lay multiple clutches of elongate eggs from
April to August (Zhao et al., 2008). Thus, egg incuba-
tion may extend from May to September based on the
incubation period of about 2 months at 28 °C (Du
et al., 2010b). During this period, Guangzhou has
higher mean soil temperatures (29.2 °C vs. 26.0 °C,
Fig. 2) than Haining (http://cdc.cma.gov.cn).

The collected eggs were numbered and weighed on
a Mettler balance (±0.001 g), and then incubated in
plastic containers (25 cm × 20 cm × 10 cm) containing
known amounts of vermiculite and water at approxi-
mately −220 kPa water potential [dried vermiculite/
water = 1:1 (wt/vol)]. A total of 21 containers, each
containing nine or ten half-buried eggs, were placed

in three incubators (Ningbo Life Science and Technol-
ogy Ltd, Ningbo, China) at constant temperatures of
26 °C (25 and 28 eggs from the low- and high-latitude
populations, respectively), 28 °C (29 and 24 eggs), and
30 °C (30 and 31 eggs). Eggs from a single clutch were
randomly assigned to different temperature treat-
ments to minimize the family effect, and the contain-
ers were moved among shelves twice a week,
according to a predetermined schedule, to minimize
the potential effect of thermal gradient within incu-
bators. We added water to the vermiculite every week
to compensate for water lost from evaporation and as
a result of absorption by the eggs.

Figure 1. Map of mainland China (top left corner) and a higher-magnification map of the boxed area showing the two
sampling sites where Mauremys mutica eggs were collected.
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Figure 2. Monthly mean 10-cm-depth soil temperatures
from May to September over a 15-year period (1998−2013)
at the two sites where Mauremys mutica eggs were
collected.
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HATCHLING TRAITS

The incubation period was calculated as the number
of days between oviposition and hatching. Upon emer-
gence, each hatchling was weighed to determine body
mass (±0.001 g), with carapace length and width
measurements being taken after the carapace
expanded to its normal shape (±0.1 mm). On the
second day after hatching, we assessed the righting
response of each hatchling in a temperature-
controlled room at 28 °C. Each hatchling was placed
upside down in an open area (250 mm × 200 mm
× 40 mm) and its performance was recorded using a
digital camera (DCR-SR220E; Sony, Minokamo city,
Japan). Each hatchling was tested five times, and the
time to right itself (defined as the time required for a
hatchling to right itself after it began to move) was
determined a posteriori from the videotapes (Delmas
et al., 2007). If a turtle did not right itself within
10 min, the corresponding data were excluded from
the statistical analysis.

STATISTICAL ANALYSIS

All statistical analyses were performed with
Statistica 6.0 (StatSoft, Inc., Tulsa, USA). Before
parametric analyses, all variables were tested for
normality using the Kolmogorov–Smirnov test, and
for homogeneity of variances using Bartlett’s test.
Log-likelihood ratio tests (G-test) were used to detect
the differences in hatching success between tempera-
ture treatments and populations. Linear regression
analysis was used to determine the relationship
between hatchling traits (body mass, and carapace
length and width) and initial egg mass. Analysis of
covariance (ANCOVA) (for hatchling body mass, and
carapace length and width, using initial egg mass as
the covariate) or analysis of variance (ANOVA) (for
righting time) was used to examine differences in
hatchling traits, with incubation temperature and
population of origin as the fixed factors. Tukey’s test
was used for post-hoc multiple comparisons among
the temperature treatments.

RESULTS

Incubation period was independent of initial egg mass
in all treatments (all treatments: P > 0.115) but
decreased with increasing incubation temperatures
in the two populations (F2, 133 = 994.90, P < 0.0001)
(Fig. 3). The between-population difference in incuba-
tion period was dependent on incubation temperature
(F2, 133 = 8.10, P < 0.001). At 26 °C, the incubation
period was shorter for the high-latitude population
than for the low-latitude population (F1, 42 = 10.60,
P < 0.01). At 30 °C, the incubation period was longer
for the high-latitude population than for the low-

latitude population (F1, 49 = 10.11, P < 0.01). At 28 °C,
there was no significant difference in incubation
period between the two populations (F1, 42 = 0.10,
P = 0.75) (Fig. 3).

With increasing incubation temperature from 26 °C
to 30 °C, hatching success increased in the low-
latitude population, but slightly decreased in the
high-latitude population (Fig. 3). Although the effect
of incubation temperature on hatching success was
not statistically significant in either population
(G-test, both P > 0.10), hatching success was higher in
the low-latitude population than in the high-latitude
population when eggs were incubated at 30 °C
[G = 4.43, degrees of freedom (d.f.) = 1, P < 0.05)
(Fig. 3).
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Figure 3. Hatching success and incubation period for
Mauremys mutica eggs that were collected from low-
latitude and high-latitude populations and incubated at
three constant temperatures. Data on the incubation
period are expressed as mean ± standard error (SE). The
number at the top of each bar represents the sample size.
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Hatchling body mass and size (determined by meas-
uring the carapace length and width) were dependent
on initial egg mass in each combination of population
and temperature treatment (all treatments: P < 0.05).
Overall, hatchling body mass was significantly
affected by incubation temperatures (F2, 132 = 8.04,
P < 0.001), but did not differ between populations
after accounting for initial egg mass (F1, 132 = 2.69,
P = 0.103). However, the effect of incubation tempera-
ture on body mass varied between the two popula-
tions (F2, 132 = 6.56, P < 0.01). Hatchling body mass
was significantly affected by incubation temperature
in the low-latitude population, with larger hatchlings
being produced at 30 °C than at 26 and 28 °C
(F2, 61 = 15.78, P < 0.001), whereas this trend was not
observed in the high-latitude population (F2, 36 = 0.54,
P = 0.587) (Fig. 4). Both incubation temperature
and origin of population affected carapace length
(temperature: F2, 132 = 7.04, P < 0.01; population:
F1, 132 = 32.96, P < 0.0001; temperature × population
interaction: F2, 132 = 1.56, P = 0.214) and carapace
width (temperature: F2, 132 = 3.01, P = 0.053; popula-
tion: F1, 132 = 17.91, P < 0.0001; temperature × popula-
tion interaction: F2, 132 = 1.30, P = 0.276). Hatchlings
from the low-latitude population had larger and wider
carapaces than those from the high-latitude popula-
tion. In the low-latitude population, the hatchlings
produced at 26 °C were smaller than those produced
at 30 °C (Fig. 4).

The righting response of the hatchlings was signifi-
cantly affected by incubation temperature in the low-
latitude population, with the proportion of hatchlings
that successfully righted themselves within 10 min
increasing (G = 11.89, d.f. = 2; P < 0.01) and righting
time decreasing (F2, 37 = 3.62, P < 0.05) as incubation
temperature increased. However, this effect was not
noticeable in the high-latitude population (proportion
of righted individuals, G = 3.03, d.f. = 2, P > 0.10;
righting time, F2, 52 = 0.51, P = 0.602) (Fig. 5). Rela-
tively more hatchlings from the high-latitude popula-
tion successfully righted themselves within 10 min,
and took a shorter time to right themselves, than did
those from the low-latitude population at 26 °C (pro-
portion of righted individuals, G = 11.54, d.f. = 1,
P < 0.01; righting time, F1, 20 = 13.58, P < 0.01) and
28 °C (proportion of righted individuals, G = 5.13,
d.f. = 1, P < 0.05; righting time, F1, 30 = 4.43, P < 0.05)
(Fig. 5), but not at 30 °C (proportion of righted indi-
viduals, G = 3.39, d.f. = 1, P > 0.05; righting time,
F1, 39 = 1.33, P = 0.255).

DISCUSSION

Our study demonstrates that there are temperature-
dependent differences in the embryonic development
rate, hatching success, and hatchling phenotypes
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between low- and high-latitude populations of
M. mutica. These results are generally consistent
with the three stated hypotheses, although the
response of embryonic development to temperature
was more complicated than expected.

Consistent with our first hypothesis, a shorter
duration of incubation was recorded in the high-
latitude population than in the low-latitude popula-
tion at 26 °C, but not at the two higher temperatures.
Previous studies have shown that shorter incubation
periods occur in high-latitude populations than in
low-latitude populations for reptiles (Ewert, 1985;
Oufiero & Angilletta, 2006; Du et al., 2010b; Sun
et al., 2013) and other animals, such as insects, fish,
and amphibians (DiMichele & Westerman, 1997;

Laugen et al., 2003; Liefting et al., 2009). This
countergradient variation may cancel out the effects
of environmentally driven thermal factors on the
timing of hatching and therefore maintain a rela-
tively constant timing of hatching among populations
in wide-ranging species (Conover & Schultz, 1995; Du
et al., 2010b). In contrast, other species exhibit
co-gradient variation along latitudinal clines (Poykko
& Tammaru, 2010). For example, Trachemys scripta
elegans eggs from high-latitude populations had sig-
nificantly longer incubation periods than did indi-
viduals from low-latitude populations (Tucker &
Warner, 1999). In the case of M. mutica, we observed
a temperature-dependent difference in the incubation
period between populations. This difference was con-
sistent with the countergradient variation at the low
incubation temperature of 26 °C and with the
co-gradient variation at the high incubation tempera-
ture of 30 °C (Fig. 3). The physiological mechanisms
underlying geographical variation in the incubation
period may involve the developmental stage of
embryos at oviposition and the developmental rate of
embryos during incubation (Du et al., 2010b; Sun
et al., 2013). It would be interesting for future studies
to identify whether similar physiological pathways
cause the between-population differences in incuba-
tion period in M. mutica.

The hatching success results essentially support
the second hypothesis. Hatching success increased in
the low-latitude population, but slightly decreased
in the high-latitude population, as incubation tem-
perature increased. A significant between-population
difference in hatching success was obtained at 30 °C,
but not at any other temperature (Fig. 3). These
results indicate that: (1) the thermal tolerance in
embryonic survival differs between the two popula-
tions, with embryos from the low-latitude population
being more resistant to high temperatures, leading to
higher hatching success than the embryos from the
high-latitude population; and (2) the range of suitable
incubation temperatures differs between the two
populations. This between-population difference is
consistent with previous studies on this species,
which exhibits higher optimal incubation tempera-
tures for low-latitude populations than for high-
latitude populations (Zhu et al., 2006b; Du et al.,
2010a).

The sensitivity of hatchling body mass and righting
response to incubation temperatures differed between
the two populations. Consistent with the third
hypothesis, the eggs of the low-latitude population
produced heavier hatchlings with faster righting
responses at the high incubation temperature (30 °C)
than at the low incubation temperature (26 °C). In
contrast, hatchling mass and righting response were
independent of incubation temperature within the
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range of 26–30 °C in the high-latitude population
(Figs 4, 5). Compared with individuals in the high-
latitude population, the heavier hatchlings at 30 °C in
the low-latitude population might be the result of a
shorter incubation period, and therefore lower energy
consumption during incubation. This phenomenon
arises because incubation temperature influences the
mass conversion efficiency of eggs through shifting
embryonic metabolism (Booth, 1998; Zheng et al.,
2006; Reid, Margaritoulis & Speakman, 2009). Alter-
natively, more material may be left behind in the eggs
of the high-latitude population at low incubation tem-
peratures. Hatchling phenotypes and hatching
success are sensitive to incubation temperatures,
indicating that: (1) embryonic development is prob-
ably more sensitive to temperatures in the low-
latitude population than in the high-latitude
population; and (2) high temperatures favour embry-
onic development in the low-latitude population.

In summary, our study found that between-
population differences in hatching success and hatch-
ling phenotypes are temperature dependent in
M. mutica. The optimal temperatures for embryonic
development are higher in the low-latitude population
than in the high-latitude population, which indicates
adaptation to the local thermal environment. There-
fore, similarly to posthatching individuals, embryos of
oviparous reptiles from different populations might
have evolved diverse strategies to benefit from the
thermal environment in which they complete devel-
opment (Denno & Dingle, 1981; Warkentin, 1995;
Colbert, Spencer & Janzen, 2010; Sun et al., 2013). In
addition, maternal behaviours also provide an impor-
tant mechanism for organisms to adapt to changing
climatic conditions, and enhance the survival of
embryos and the fitness of offspring (Mitchell, Maciel
& Janzen, 2013, 2014). For example, females may
shift the timing of nesting and actively select nest
sites and depths with a suitable thermal environment
for embryonic development to reduce the negative
effects imposed by changing climatic conditions
(Ewert et al., 2005; Doody et al., 2006; Telemeco,
Elphick & Shine, 2009). Yet, a large knowledge gap
remains regarding these strategies because of logis-
tical difficulties or simply a lack of investigations. In
the future, studies on both the ecological phenomena
and underlying physiological and biochemical mecha-
nisms are required to understand how embryos are
adapted to their environments.
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